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ABSTRACT

A mathematical model is developed using analytical techniques to
determine the longitudinal and vertical distributions of velocities and
salinities, averaged over a tidal period, for mixed but partially stratified
estuaries. The flow field is assumed laterally homogeneous and the estuary
width and depth 4are assumed to be functions of the longitudinal coordinate
only. Required inputs to the model include the salt intrusion length, the
ocean boundary salinity, the distribution of the depth-averaged salinity

and the freshwater discharge.

The governing equations included in the model are the vertical and
longitudina} equations of motion, continuity, salt conservation and an
equation of state. The key assumption is that the longitudinal salinity
gradient is independent of depth. This decouples these equations and thus

permits an analytical sclution to be found.

Using data from laboratory flume tests from the U.S. Army Waterways
Experiment Station and the Delft Hydraulics Laboratory, and field surveys
from the James River Estuary, the model solutions are used to find corre-
lations for the mean vertical transfer coefficients of mass and momen tum
with gross characteristics of the estuary. These correlations, plus the
results from a one-dimensional numerical model, permit this analytical
model to be used as a predictor of the velocity and salinity profiles in
estuaries and to relate changes in freshwater discharge to possible changes

in the location of shoaling zones.



ACKNOWLEDGEMENT

Primary support for this study came from the 0ffice of Sea Grant,
National Oceanic and Atmospheric Administration, U.S. Department of
Commerce, Coherent Area Project Grant GH-88 and 2-35150, under the Estuary
Modeling Program underway at the Ralph M. Parsons Laboratory for Water
Resources and Hydrodynamics of the Department of Civil Engineering. This
program is under the administrative and technical supervision of Professor
Arthur T. Ippen and Professor Donald R.F. Harleman {(DSR 72602 and DSR
73479). The purpose of the Estuary Modeling Program is to develop analyti-
cal and numerical techniques for medeling the behavior of estuaries and
coastal embayments in order to extend the basic understanding of estuarine
dynamics and the ability to make predictions relating to the estuarine

environment.

Dr. Donald R.F. Harleman has carefully followed the development of
this work and has provided valuable guidance and assistance. Dr. M.
Llewellyn Thatcher has also provided additional advice. The authors also
wish to extend their appreciation to Dr. Gerritt Abraham at the Delft
Hydraulics Laboratory and to Dr. J. J. Dronkers, Department of Public Works,
The Netherlands, for their assistance in making available the data from the
Delft salinity flume. Mr. Frank Hermann provided similar assistance in
obtaining data from the salinity flume studies at the Waterways Experiment
Station, U.S. Army Corps of Engineers sponsored by the Tidal Hydraulicsg

Committee of the Corps.

A major part of the computer work was done at the M.I1.T. Information
Processing Center. Grateful acknowledgement is due to Mrs. Stephanie M.
Demeris for her careful typing of this report. The material contained in
this report was submitted by Mr. Fisher in partial fulfillment of the

requirements for the degree of Doctor of Philosophy at M.I.T.



ABSTRACT

TABLE oF CONTENTS

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF SyMBoLg

1 INTRODUCT 10N
1.1 Estuaries as Natural Rescurces
1.2 Estuarine Circulatiop - A General Description
1.3

1.4
1.5

1 Physical Models
2 Hathematical Modelg

Objectives of this Study
Synopsig of the Study

II PREVIOUS INVESTIGATIONS

e I Y
LYV R L S

Analysis of Recorded Dpatga
Analytical Modeling of Circulation

Turbulent Diffusion

Iz THEORETICAL CONSIDERATIONS

3.1
1.2

ed fad
P
£

Statement of the Problem
Governing Equationg

3.2.1 Introduction

3.2.2 Equationg of Motion

3.2.3 Equations of Water and Salt Conservation
3.2.4 Time-Averaging of Equationg

3.2.5 Equation of State

Additiomal Assumptionsg
Synthesis of Governing Equationsg

10
13

13
13
16

16
17

19
20

22

22
25
30

35

35
36

36
38
39
39
44

44
46



IV

VI

VII

Boundary Conditions

Non-Dimensionalization of Equaticns

Analytical Solution of Steady-State Conditions
Inputs for Solution

Theoretical Velocity and Salinity Profiles

Lt G Lo e L
O - o

3.9.1 Velocity Profiles
3.9.2 Salinity Profiles

EVALUATION OF STEADY-STATE SOLUTICN

4.1 Intreduction
.2 W.E.S. Flume
4.2.1 Description of Flume
4.2.2 Lvaluation of Bottom Boundary Condition -
WES 16
4.2.3 WES Test 14 and 11
4.3 Delft Flume
4.4 James River Estuary
4.5 Comments on Neglected Terms and Other Model

Agsumptions
4.6 Analysis of Time-Averaged Eddy Coefficients

ANALYSIS OF TRANSTENT FLUME STUDY USING COUPLED ONE AND
TWO DIMENSIONAL MODELS

5.1 Description of Transient Test Pracedure

5.2 Discussion of One-Dimensional Numerical Model and
Results for Transient Test

5.3 Analytical Solutien for Unsteady Flew Conditions

5.4 Two-Dimensional Experimental and Analytical Re-

sults for Transient Flume Study
5.5 Influence of Transient Flume Conditicns on
Shoaling Characteristics

THE SAVANNAH ESTUARY - AN ANALYTICAL INVESTIGATION OF
ESTUARINE SHOALING

SUMMARY AND CONCLUSTONS
7.1 Objectives

7.2 Summary

7.3 Future Work

48
52
53
58
59

59
64

67

67
67

67
69

76
83
84
51
99
112
112
113

122
123

131

135

141

141
142
144



BIBLIOGRAPIY
APPENDICES

Appendix |

Appendix 2

Appendix 3

The Computer Program for lwo-bimensional
Analytical Estuary Model

The Computer Program for Spline Inter-
polation of One-~Dimensional Salinity
Gradients

Tables of Computed and Experimental Vel-
ocity and Salinity Distributions

151

155



4.2a,b,c
4.2d
4,.3a

4.3b

4. 3c
4.3d

4.4a

4.4b

LIST OF FIGURES

Typical estuary, eastern U.S. coast

Definirion sketch for model equations

Analytic solution for horizontal velocity profile
Analytic solution for vertical velocity profile
Analytic solution for salinity profile

Schematic diagram of WES tidal flume

Longitudinal salinity and derivatives WES 16
Digstribution of vertical velocity, WES 16
Horizontal velocity profiles, WES 16, stations 5,

Horizontal velocity profiles, WES 16, stations 80
and 160

Salinity profiles, WES 16, stations 5, 40, and 80
Salinity profiles, WES 16, stations 120 and 160

Horizontal velocity profiles, WES 11 and WES 14,
station 80

Salinity profiles, WES 11 and WES 14, station B0
Horizontal velocity and salinity profiles, Delft
Horizontal velocity and salinity profiles, Delft
Horizontal velocity and salinity profiles, Delft
Horizontal velocity and salinity profiles, Delft
Survey sites, James River estuary

Horizontal velocity and salinity profiles, James
26 June - 7 July

Depth variation of longitudinal salinity distritu
WES 16

40

s, 120

117
116
121

122

River,

tion,

Page

37
61
62
65
68
70
71
74

75

77
18

81

82
85
86
87
88
89

g2

96



Figure Page

4.12 Depth variation of longitudinal salinity distribution, 97
Delft 116
4.13 Depth variation of longitudinal salinity distribution, 98

James River, 26 June - 7 July

4,14 Effect of using constant eddy coefficients 103
4,15 Correlation of D 109
4.16 Correlation of K 110
5.1 Correlation of Dispersion Parameter to Degree of 117
Stratification
5.2 Tidal salinity verification, station 40, WES 42 119
5.3 Tidal salinity verification, station 80, WES 42 120
5.4 Tidal salinity verification, station 120, WES 42 121
5.5 Longitudinal salinity distribution, WES 42 125
5.6 Horizontal velocity profiles, WES 42, cycle 1 127
5.7 Horizontal velocity profiles, WES 42, cycle 25 128
5.8 Salinity profiles, WES 42 129
5.9 Schematic illustration of null point 132
5.10 Relationships between null point and freshwater inflow, 133
WES 42
6.1 Longitudinal location of maximum shoaling in relationm 136
te null point for Savannah estuary, Qf = 7000 cfs
6.2 Location map, Savannah estuary 137
6.3 Effect of Q. on longitudinal salinity distribution, 138
Savannah esguary
6.4 Null point location for Savannah estuary 140



Table
3.1
4.1
4.2
4.3

4.4

4.5
4.6
4.7

4.8

4.9

4.10
4,11
4.12a
4.12b

4.12¢

5.2

5.3

5.4

6.1

al
-4A38

LIST OF TABLES

Model Parameters for Figures 3.2 - 3.4
Summary of WES Salinity Flume Conditions
Best-Fit Values for D for WES 16
Best~Fit Values for K for WES 16

Computed and Experimental Velocity and Salinity
Distributions - WES 16

Delft and Vicksburg Flume Dimensions
Summarv of Delft Salinity Flume Conditions

James River Estuary - Flow Conditions

Comparisen of Size of Neglected Terms from Longitudinal
Fguation of Mection for WES Test 16

Comparison of Size of Neplected Terms for Longitudinal
Equation cof Motion for James River and Delft Flume

Longitudinal Variation of Mean Eddy Coefficients
Mean Values of FEddy Coefficients

Computation of Correlation Constants for WES Tests
Computation of Correlation Constants for Delft Tests

Computation of Correlation Constants for James River
Survey

Summary of Flume Conditions for WES Transient Test 42
W.E.5. Transient Test 42 Flume Conditions

Summary of Inputs to Two-Dimensional Model for WES
Transient Test 42

as
Effect of T Term in Salt Balance

Savannah Estuary & Inputs to Analytical Model

Computed and Experimental Velocity and Salinity
Distributions

Page
60
72
79

79

83
90
84

94

95

100
101
106
107

108

112
118

126

130
139

156



LIST OF SYMBROLS

cross-sectional area of the estuary

estvary width
Chezy resistance coefficient

vertical coefficient of eddv momentum flux, averaged over a
tidal period

effective constant value of Dv

depth from surface to centroid of cross-sectional area
longitudinal dispersion coefficient, E(x,t)

longitudinal dispersion coefficient in freshwater region
2
Prfp

OfT

estuary number,

Coriclis parameter

densimetric Froude number evaluated at the entrance to the estuary

u
Q

p
h ——=
& p
acceleration of gravity

depth of mean water level

horizontal and vertical coefficients of eddy salt flux, averaged
Over a tidal period

effective constant value of K

eddy diffusivity
longitudinag] dispersion parameter
salinity intrusion length

length of estuary
mixing length (adiabatic)

1
Manning's resistance coefficient

1¢



ingtantaneous pressure

mean pressure averaged over a few minutes
mean pressure averaged over a tidal period
tidal component of two-dimensional pressure
turbulent pressure fluétuations

tidal prism, defined as the total volume of water entering
the estuary on the flood tide

one-dimensicnal instantaneous local discharge, 0(x,t)
freshwater discharge

lateral inflow to one-dimensional estuary model
hydraulic radius

Richardson number

instantaneocus salinity

mean salinity averaped over a few minutes

turbulent salinity fluctuation

mean salinity averaged over a tidal period S5(x,y)
one-dimensional instantanecus local salinity, g(x,t)
tidal compcnent of two-dimensional salinity

ccean salinity

time-averaged,depth-averaged salinity, Sd(x)

time

tidal periocd

instantaneous horizontal velocity, u(x,y,t)

mean velocity averaged over a few minutes

turbulent component of u

tidal component of u

average of u over a tidal period, U(x,y)
11



™

w3

@

one-dimensional instantaneous horizontal veloeity ﬁ(x,t)
freshwater velocity

maximum flood velocity at estuary entrance
instantaneous vertical velocity, v(x,v,t)

V, averaged over a few minutes

turbulent component of v

tidal component of v

average of v over a tidal period, Vix,v)

turbulent comporent of lateral velocity

longitudinal axis

vertical axis

lateral axis

conversion factor in equation of state (assumed = 0.75)
eddy viscosity

dimensionless depth, y/h

dimensionless salinity, SISO, Q& ,n)

dimensionless depth-averaged salinity, Sd/SD, ed(g)

dimensionless longitudinal coordinate, x,!'Li

density, p(x,vy,t)

reference density

P averaged over a few minutes

tidal variation of p

P averaged over a tidal period, pl{x,y)
stream function

dimensionless stream function W{Qf

12




[. Introduction

1.1 FEstuaries as Natural Resources

Coastal zones and estuaries, in particular, provide major resources
for both the economic and social well-being of modern man. In recogni-
tion of these valuable rescurces, increased efforts are being made to in-
sure and protect them from needless deterioration and neglect., To aid in
these efforts a more complete understanding of the complex inter-
relationships between the biological, chemical and physical mechanisms
of estuaries needs to be developed.

Estuaries are heing used as sinks for industrial and municipal
wastes, When properly balanced with assimilative capacities, this mav
be a practical use of these water bodies. However, careful attention
must be given to the types and amounts of effluents discharged, in order
to avoid conflicts with their great potential for bilological productivity
and recreation by man.

In order to achieve this balance of uses, a thorough understanding
of the complex circulation patters of salt and freshwater in the estuaries
is needed.

1.2 Estuarine Circulation ~ A General Description

An estuary is defined as a body of water connecting a source of
freshwater with a tidal sea or bay and extends over the length of tidal
action., Natural estuaries, with their irregular boundaries, have highly
complex patterns of circnlation of the salt and freshwater masses con-
tained within them. The compounded influences of the facters involved,

i.e., the complex geometry, the tidal flows, the mixing induced L. them

13



and by the density differences makes estuarinc behavior a very difficult
subject for analytical description.

Figure 1.1 is a representation of a typical estuary as might be
found on the eastern seaboard of the United States. This estuary recedives
freshwater flows from several rivers and streams and terminates in a bay
or the ocean. Perhaps the most striking feature is the irregular
boundaries. There are turns and embayments as well as a nonuniform ex-—
pansion from the narrow section at its inland end to the wide section at
the sea boundary. Hence, local eddying and flow reversals must be ex—
pected throughout the flow field, and in general, the velocity will have
time-varying components in the longitudinal, lateral and vertical
directions. MHowever, the predominant direction for the velocity is along
the longitudinal axis, periodically changing direction with the tide.
Certain sections of the estuary can have strong lateral components during
portions of a tidal pericd.

The influence of tides makes the flow in estuaries unsteady in time,
both within a tidal period, and during leonger lunar phases. The season-
al wvariation in the rates of freshwater inflow will also contribute an
additional lonp-term dynamic unsteadiness to estuarine flows.

One of the most important factors influencing the complex cir-
culation is the density difference between the river discharge at the
heéd, and the ocean salinity at the mouth. Density currents resulting
from these differences are cften major components of the total circula-

tion, and must be Included in a realistic model of the flow field.

14
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For some estuaries, the effects of surface winds or Coriolis
accelerations may be a significant influence on the circulation. Howewver
in peneral, these factors are of secondary importance when compared with
the effects of complex geometry, tidal mixing and density differences
and will not be considered further in the present development.

1.3 Estuary Modeling Techniques

The purpose of building models of estuaries is to represent the
complex circulation of the prototype in a simplified form which can be
tested and studied to determine the possible consequences of modifica—
tions of controlling factors on the natural circulation. Examples of
such changes could include the dredging of a navigation channel, the
diversion of freshwater inflow to other basins, or the placement of a
diffuser for the heated condenser water of an electric power station.
The former might seriously alter the salinity distribution while the
latter could obviously influence normal bionlogical cvcles. Recourse
to various types of models must be made to provide estimates of the
impact of such changes.

There are two main methods for modeling estuaries; physical and
mathematical models. Only a very brief review of these techniques 1is
needed here since Tracor (1971) has recently presented a complete
survey of this field.

1.3.1 Physical Models

A Physical hydraulic model provides direct visual obhservation of
flow. They can also he carefully instrumented for detailed measurements

of the velocity field, water surface elevations and dissolved or

16



suspended substances. Physical models of estuaries are distorted due
to large protetype dimensiens. Vertical scales are frequently 1:100
while horizontal scales may be 1:1000. This results in a 1:10 dis-
tortion of all cross-sections. General usage has shown that in spite
of this distortion, these models can be made to reproduce many details
of the circulation as well as of the distribution of salinity.

At the present time, physical models of estuaries are the most
important technique for determining the effects of changes in the prote-
type. Their great expense and slow building and operating times are
drawbacks which sophisticated mathematical wmodels may avoid. However,
one can expect these physical models to continue to be impertant tools
for estuarine analysis for a long time to come.

1.3.2 Mathematical Models

The movement of water and the distribution of dissclved suhstances
in estuaries are governed by physical laws for which there are known
mathematical descriptions. In many cases, where various simplifying
assumptions can be made, these mathematical descriptions can be written
as equations for which there are known solutions. Depending upon the
solution technique, these models are referred to as either numerical or
analytical models. A numerical seolution implies replacing the governing
differential equations with approximate forms which can be sclved by
computer. An analytical solution is an exact solution of the original
equation,by integration, with no subsequent approximations.

The application of analytical models to problems of estuarine cir-

culation is limited by the mathematical complexity of the governing

17



equations. In order to reduce these equations to a form which can be
solved analytically, various assumptions may be introduced which often
render the final solations very limited in application, However, there
are several analytical estuary models which pan vield meaningfy) resulty

In general, these analytical models describe conditions averaged
over one or more tidal cycles. Thus, they serve g limited function if
changes within a tidal period are of interest. This will of course
depend on the problems being considered. Analvtical models are algg
usually restricted to one or two space dimensions, €.2., to depth and
lateral, lateral and longitudinal, or depth and longitudinal directions,
Finally, these analytical models are restricted to problems for which
simple boundary conditions can be prescribed.

Until the advent of the modern high speed computer, analytical
models were the only mathematical technique for describing estuarine
circulation. Numerous models of tidal flushing, salinity distribution
and tidal motions, had been developed. Many of these models continue
to have application today in conjunction with the more powerful
numerical methods, These models have also played an important role in
clarifying the physical understanding of the important processes and in
deriving the PICDEr equations to be included in the newer models.

The greater Part of the recent literature on estuarine medeling
PETtained to numericy) Mathematical models. These models use advanced
computer techniques tq find solutions to the governing equations of mo-
tion and of magg conservatiop, One-, two- and three—dimensional models

have beep developed, the latter however only in a very preliminary form.
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An important feature of these models is their ability to handle the un-
steady case, i.e., within a tidal period. Thus, the averaging over a
tidal period which was required for mest analytical models is not re-
quired for numerical medels.

At the present time, the numerical models available for engineering
applications are of either the unsteady one- or two-dimensional type.

A one-dimensional! model averages all dependent variables cver the cross-
sectional area, and thus vields changes in mean values with time and along
the longitudinal axis. These models can be used to predict water surface
elevation, mean currents, and mean salinities. They can alsc be used

with certain reservations to determine the cress-sectional mean concen-
tration of a non-conservative water quality parameter, such as dissolved
oxygen or biochemical oxygen demand .

Two-dimensional numerical models usually allow variations along the
lateral as well as along the longlitudinal axis. In this case, the only
averaging is with depth. Again, these models can predict currents, water
quality parameters, etc. These models are more complex than the one-
dimensional case with regard to the computational techniques required.

1.4 Objectives of this Study

The techniques for estuarine modeling described in the preceeding
sectlons suggest a possible combined approach. Physical models can be
used with mathematical models to analyse different scales of cir-
culation problems. Also, analytical models can be used with numerical

models to increase the mumber of spatial dimensions of the solution.
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This investigation develops a two-dimensional analytical model of
estuarine circulation including vertical and longidudinal distributions
of velocity and salinity. All equations are averapged over one or more
tidal periods. This model can be coupled with a one-dimensional numerical
meode]l which is not time-averaged, but is averaged over a cress-section.

The ability to calculate vertical variations of the important flow
parameters is cften a useful tool for solving estuarine problems.
Vertical salinity stratification is a kev element in the circulation
pattern of an estuary. Models which can predict the effects of changing
geometry, freshwater inflows, etc., on this stratificaticn are of great
value. The modeling of vertical velocity profiles is another useful
mwodel capability. Many prohlems of shoaling in estuaries can only be
properly studied with a knowledge of the vertical distribution of
velocity.

If a model similar to the one described above is to have practical
application as a predictive tool, all parameters included in the solution
technique must be determinable in advance. Thus, an important part of
the objectives of this study is to obtain relationships between the
various time-averaged coefficients of turbulent diffusion and eddy
viscosity included in the model and the gross parameters of estuarine
circulation.

1.5 Synopsis of the Study

The analvtical model described in the previous section can be used
to find the 1ongitudinal and vertical distributions of velocity and

salinity for partially stratified or well mixed estuaries. All model

20



results are for conditions averaged gver a tidal perioed. Certain coeffi-
cients of mixing included in the mathematical equatious of the model

have been correlated with various parameters for the estuary in question
from field and laboratory experiments. Proper application of this model
requires a coupling with a one-dimensicnal unsteady numerical model.

The model has been developed and tested with data from laboratory
flumes and field surveys. Results indicate the model has practical
application in the prediction of salinity stratification and shoaling
changes as might result from the engineering modifications of the

factors which control estuarine circulation.
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II. Previous Investigations

2.1 Analysis of Recorded Data

The last twenty-five years have been a period of active interest in
the description and theoretical analysis of the circulation and mixing
characteristics of estuaries. A large body of literature has evolved
covering results from field surveys, laboratorvy experiments and thecretical
analysis. These publications are as diverse as the estuaries they dis-
cuss, and this chapter will not attempt to review them all, A very ex-
cellent survey of this work is presented by Bowden (1966). The present
review is restricted to those articles which discuss the vertical dis-
tributions of velocity and salinity for partially stratified estuaries.

Pritchard (1952} describes the cifculation in the Chesapeake Bay
estuarine system, and in particular, in the James River estuary. Data
from an extensive program of field surveys are discussed, in which
salinities, temperatures and velocities were measured at several depths
and stations and averaged over one or more tidal periods. The resulting
net circulation and salinity distribuctions are typical for partially
stratified conditions. A basic feature of this net circulation is
a reversal in the vertical distribution of the time-averaged horizomntal
velocity. In the surface region, extending to about middepth, the net
flow is towards the ocean, while the bottom region has flow in the
opposite direction, towards the river end of the estuary. The depth

integral of this veloclty is equal to the net discharge of freshwater.

Although two regions can be identified for the velocity, the vertical

salinity distribution can not be separated into two distinct zones. In
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partially stratified estuaries, there is a continuous increase in
salinity from the surface to the bottom, without a noticable point of
discontinuity.

Pritchard (1952, 1954) also identifies several interesting features
of the longitudinal salinity gradiemt. For all depths, there is an
increase in salinity from the freshwater region to the boundary salinity
at the ocean end. In addition, over most of the estuary this longitud-
inal salinity gradient is nearly independent of depth, i.e., vertical
position. This latter feature does not hold very near the ocean
boundary or where the salinity goes to zerc, upstream.

Pritchard {1954) discusses the various terms in the equation of
g8alt conservation and uses the James River data to back-calculate the
relative order of these terms. In this analysis, the velocity and

galinity are written as the sum of three terms

=
I

U+Ut+u' 2.1

L*2]
i

S+St+s'

where U is a mean velocity for one or more tidal periocds, Ut.is a one-
dimensional tidal velocity {assumed perodic) and u' is a random
fluctuation due to turbulence. A similar set of definitions is made
for the salinity.

The salt conservation equation averaged over a tidal period is

written
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%S—+U%§+V-§-§=£(Kxg—i)+£(l(y%§ 2.3
where U and V are the mean components of velocity in the horizontal and
yvertical directions, x and y, respectively. Kx and I(.y are identified
as mean coefficients of eddy diffusivity where Kx %glrepresents the
cross—-product of the turbulent terms u's' averaged over a tidal period.
Similarly, Ky %3 replaces v's'. The bar over the products represents
the time-average over the tidal period. All other cross-products are
assumed uncorrelated, and hence zero. The above equation assumes homo-
geneous conditions in the lateral direction.

For the period of study, Pritchard found the %% termt to be small,
indicating that the freshwater inflows to the James River estuary were
nearly steady. The horizontal advection U %g-was found to be much
larger than the horizontal eddy diffusion %;—(Kx %Sb and also larger than
the vertical advection V %%—except near middepth. With these considera-
tions, a simplified mass balance can be written -

a8 a8 _ 3 a5

Use—+V — (K

£ =2y, 2-4
ax oy ay y 3y

Pritchard (1956) then developed the equations of motion for a simple
partially stratified estuary using the same James River data as cited
before. Surface shear due to wind is neglected. The longitudinal con-

servation of momentum equation, averaged over a tidal period, is
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U AU t 1
ey ila g mm = - 2 z .
U ax v dy Ve 5% B 9x ox Ay dz

where p is the hydrostatic pressure,p the density, w' the turbulent
fluctuation of the lateral velocity component {z axis). By analogy with

the conservation of salt eguation, Pritchard argues that only the ver-

a 1 T
tical eddy diffusicn of momentun mv%;g— needs to te retained. The time-

averaged field acceleration terms for the James River data are also small.
Finally, the acceleration resulting from the tidal component cf the

au
velocity Ut ﬁ;E-is an order smaller than the terms on the right-hand-

side of the equation. Using similar arguments, the lateral momentum

equation is written

.. 7
K JPTICI 2.6

0=- 3z dy

e

where f is the Coriolis parameter. Using appropriate boundary conditions,
equatlons 2.5 and 2.6 are solved for the distributions of the turbulent
mementum flux terms, averaged over a tidal period. The results indicate
that the mean fluxes are zero at the surface and near the bottom, with

a somewhat parabelic distribution having a maximum near middepth.

2.2 Analytical Modeling of Circulation

The net circulation averaged over a tidal period described by
Pritchard (1952, 1954, 1956) has been used by several investigators
as a basls for the development of analytical models. These models have
several applications, an important one being the analysis of shoaling

sones in estuaries. Simmons (1955) and others have identified a
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relationship between locations where the net horizontal velocity at
the bottom of a channel reverses direction and zones of high rates of
shoaling. Thus, analytical models which can predict the location of
this reversal, called a "null point", have practical engineering
applications.

Abbott (1960) examines the role of the longitudinal salinity
gradient in determining the direction of the net, near bottom drift
velocity. Using the assumptions of Pritchard(1956), the longitudinal

momentum equation, averaged over a tidal pericd,is written

T dh h -
p ay dx o) BX

where Txy is the mean shear and hO is the mean water level. Assuming
zero surface stress, this equation is integrated over the depth and

the mean stress on the bed is found

oh
S N 0
= Eh(Gh (- 5By o 2 2.8

T
xyb dx

where h(x,z) is the local water depth. Abbott alsoc shows that this bed
shear, for an oscillating flow, is in the same direction as the drift

velocity

Txyb ~ v 2.9

From 2.8 it is seen that the drift velocity will be either positive or

negative when

gh
1 ap > 0 2.10
= h _ o _
2 ( ax ) < - ax °
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In order to apply this criterion, accurate measurements of the mean
gh
surface slope ;— and the mean density gradient %ﬂ are needed , the
ax

ax

former being a difficult parameter tro determine in most cases. Abbott
assumes the salinity gradient to be independent of depth. Data of this
type is used to test the criterion for the Thames and Mersey estuaries.
For the Thames, using data reported by Inglis and Allen (1957), no
reversal in drift velocity is predicted by this method, although the
field studies indicate the existence of a null point. Abbott suggests
an additional momentum flux must be present in this case, perhaps a non-
linear tidal convection. 1In the case of the Mersey, a null point
is predicted near the location observed in field studies. Here the
model appears to reflect the physical processes involved rather well,

Hansen and Rattray (1965) present an analytical model of estuarine
circulation averaged over one or more tidal periods. A simultaneous
solution of the equations of mass and momentum conservation, assuming
geometric similarity of velocity and salinity profiles and lateral
homogeniety is developed. The estuary is divided into three regions
inner, central and outer, for which different assumptions about salinity
gradients and mixing coefficients are made, The equations included in

the medel are:

p _ 3 v

momentum s 3y {pD By) 2.11
P - 2,12
gy P8
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continuity au  av

eyl = 2.13

ax T dy 0

3% 39 _ 3 35 3 as 914
mass u§;+v_y_3_£(xx3x)+8y (KVa.\') .
state p = po(l + as) 2.15

where D 1s the eddy viscosity and o is a conversion factor for salinity.
The boundary conditions include zero velocity at the hottom, knowm stress
at the surface, net flow equal to river discharge and zero net salt flux,
Hansen and Rattray do not discuss the differences between the classically
defined eddy viscosities and eddy diffusivities and the eddy coefficients
which appear in their equations for conditions averaged over a tidal
period. These differences are examined in detail in the next chapter of
the present analysis. For the purposes of this review, it is important
to note that all eddy coefficients introduced into the equations include
neglected terms, terms resulting from averaging over a tidal period,
as well as the averages of the turbulent cross-products.

For the central or middle region of the estuary, the authors assume
that che longitudinal salinity gradient is independent of bhoth depth
and longitudinal positiom. The velocities are assumed only dependent
upon depth, and thus similar at different stations., The vertical eddy
coefficients, I and Ky are held constant with depth and the horizontal
eddy diffusivity I-{x is related to the freshwater velocity

d
E(Kx) Uf. 2.16
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With the above assumptions, solutions can he found for the vertical
distributions of velocitv and salinity. Fxcept for the possible variation
in Kx’ the solution is independent of longitudinal position. For the
condition of zero for the net surface wind stress, two dimensionless

parameters determine the vertical velocity and salinity prefiles

ngSoh3 K Kxo
Ra =k M= _%__E 2.17
X0 Uf h

where S0 and Kxo are 5 and Kx at x = 0 respectively, and Uf is the
freshwater velocity. By a proper choice of values for Ra and M,
the solution can be fitted fairly well to some of Pritchard's James
River data.

For the inmer and outer portions of the estuary, near the river
and ocean end respectively, different assumptions about eddy ceefficients
are made. The solutiong in these regions still require similarity of
velocity and salinity profiles.

Hansen (1966) proposes a non-similarity solution for a similar set
of governing equations. Again, the longitudinal dependence of the ve-
locities and salinities is determined by the longitudinal variation of
the horizontal eddy diffusivity. However, Pritchard (1952) shows that
the longitudinal eddy flux of salt is the smallest term in the time-
averaged salt balance. Hansen is thus using the weakest term in the
model to provide the longitudinal dependernce.

McGregor (1972) develops an analytical model of the net, non-tidal

bottom transport velocity For an estuary. This model is similar to
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other studies in that a longitudinal force balance includes onlv the
pressure gradient and the vertical eddy stress gpradient. For the pressure
gradient, both a surface slope and density gradient are evaluated from
recorded data for the Humber estuarv. The solution technique introduces
a number of empirical constants for fitting these distributions, as well
as an empirical expression for the mean eddy wviscosity. By proper
fitting of the numerous constants, MeGregor is able to match the net
bottom velocity zero points with the shoaling zones for the Pumber.

The analysis is a good illustration of the roles of the surface slope,
salinity gradient and river discharge in determining the zones of

high rates of shoaling, However, due to the need to fit several con-

stants to previcus data, the model is of Timited predictive capahility,

2.3 Turbulent Miffusion

As shown in the previous section, mathematical modeling introduces
coefficlents of turbulent diffusion for mass and momentum. There have
been a few investigations which have attempted to measure these coef-
ficients and relate them to the mean properties of the flow field.

Kent and Pritchard (1959} analyse the vertical eddy flux of salt
for the James River, A mixing length concept, similar to Prandtl's

classic mixing length theory of turhulence, is applied in this analysis.

Following Prandtl‘'sg arguments, a mixing length can be defined such that

2 2 V!SI
E = -
ov| |3y




where N is a constant, £ is the mixing length, v's' is the vertical eddy

ER
salt flux, %g-is the vertical gradient of mean velocity and g;—the
vertical gradient of mean salinity, all averaged over a tidal period.
This b is defined as the observed mixing length, and refers to the actual
stratified flow for the estuary. For the unstratified case, an adiabatic

mixing length is defined from earlier work by Montgomery (1943)

K
g = fi (h~y) 2.19

o

where XK is Von Karman's constant and h is water depth. Kent and Pritchard
find that the observed and adiabatic mixing lengths can be best related

by the expression

-1
= +
R= 8,1+ 8RY) 2.20
where B is scome unknown proportionality factor and Ri is the local

Richardson number

ap
By
R, = —
. 2.21
1 Y.

¥y

e

The observed mixing length is calculated from the extensive James
River data. The velocities and salinities are averaged over one oT
more tidal periods and therefore a tidal mean mixing length is determined.
Although agreement between the cbserved and theoretical mixing length
is good, an improvement is found when an additional term for the wind

waves is inecluded.
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Pritchard (1960} extends the mixing length theory to include the defining

of an eddy diffusivity

Ky = Lu* 2.22

where 1 {s the mixing length developed by Kent and Pritchard (1959) and
u* ig a characteristic velocity. u* is related to the tidal! current at

middepth, Ut' by similar mixing length arguments

u* = ut(m‘aﬁ (1 + BRi)—l 2.23
h

The eddy diffusivitv can therefore be written

2
nuy 2
e Y (h-y) -2
Ky = h3 a+ BRi) . 2.24
The Richardson number is approximated as

B 30
R - __D_ av .
i U 2 2.25

(0.7 HE

For the lames River estuary, R was found to be 0.276 and n was 8.59x10“3-

An eddy diffusivity computed from the ahove relationships represents the

net, non-tidal eddy processes. No discussions are presanted which attempt

to relate this pet eddy diffusivity to the reat time tidal eddy coeffici-—

ent. .

Bowden (1960) analyses velocity and salinity data for the Mersey

Fstuary,

viscosity, averaped over a tidal period, for five depths at a single

Station are determined, Values for the mean eddy viscosity are

3z
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hackfigured from a time-averaged longitudinal equation of motion which
considers only the pressure gradient and vertical eddy diffusions of
momentum. According to Bowden's analysis, for the particular conditions
studied, the effective eddy viscosities for the tidal time-average are
about one-tenth as large as those expected for a non-stratified flow.

The coeffivients of vertical eddv diffusivity are determined from
a salt balance equation which considers only the horizeontal advection
and the vertical eddy diffusion. 1In this case, estimates of toth the
t ime-averaged and tidal varving coefficients are made. The diffusivities
averaged over a tidal reriod are, in peneral, smaller than the non-aver-
aged coefficients. Again, Bowden concludes that the salinity stratifica-
tion yielded eddy diffusivities smaller than would be expected for a
neutrally stable fluid. In addition, the values for the mean eddy
viscosities are found to be greater at all depths than the mean ver=-
tical eddy diffusivities.

Bowden (1963) and more recently, Bowden and Gilligan (1971) have
studied additional data for the Mersey Estuary. As in the previous
studies, mean values for the eddy coefficients are computed from the
field data. When the ratio of eddy viscosity to vertical eddy diffusivity
is plotted against a local Richardson number, a distribution similar to
that of Munk and Andersen (1948} is found. Thus, {t appears that
although the mean coefficients, averaged over a tidal period, vield
smaller values than the non-averaged coefficlents, they may still be
related empirically to a local Richardsen number and therefore the

degree of vertical stratification.
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llarleman and Ippen (1967) analyse data from a laboratory investigatier
of estuarine dynamics. A larpe salinity flume with a tidal and a river
control at elther end was used to model partially stratified estuaries.
Fxtensive velocity and salinity data were recorded and used te backfigure
vertical eddy diffusivities from the time-averaged salt balance equation.
In this analvsis, the horizontal eddy diffusion is neplected. Both a
vert{cal and horizontal dependence is found for the vertical eddy dif-
fusivity. Maximum valves at each longitudinal station ocecur at about
middepth, with a somewhat parabolic decrease towards the surface and
hottom. In addition, the coefficients decreased from a maximum at
the ocean boundary to a minipum far upstream. Using the relationships
of Pritchard (1960), mean vertical eddy coefficients were computed for
the same set of flume data. These equations, developed for the James

River estuary, yield vertical and longitudinal variations of the eddy

coefficlents very similar to the backfigured experimental results.

Pritchard’s equations did, however, produce slightlv smaller values at

all statlons for these eddy diffusivities.

For both the work of Bowden and Harlemar and Ippen, eddy coefficients

for equations averaged over a tidal period are backfigured from recorded

data. Various terms are neglected from the complete set of governing

equations In thesge analyres, and therefore, the resulting coefficients

must include the effects of these neglected terms. These coefficients

are not simply the averages over a tidal period of the actual eddy

coefficients which relate to the turbulent fluctuations. These argu-—

ments are developed in freater detail in the following sections of

this repore,
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111 ngpretical Cogsideratiggg

3.1 Statement of the Froblem

The analytical models of Abbott (1960), McGregor {1971) and Hansen
and Rattray (1965), although limited by the.solution technigques, point
out the possible advantages from proceeding in a parallel manner to
model time-averaged vertical velocity and salinity distributions. These
models include, for the longitudinal equatien of motion, only the
pressure gradient, which contains the salinity gradient, and the eddy
transpert of momentum. The velocity distributions determined from this
equation include all of the important features of measured net velocities.
It may therefore he concluded that this simplified balance of forces
describes the essential mechanisms of time-averaged circulation.

There are two important disadvantages of the Hansen and Rattray
model. The First is the necessity of dividing an estuary inte several
regions, each having a unique mathematical model and solution. Within
each of these regions the solutions maintain geometric similarity.

In real estuaries, however, there is a continuous transformation of
velocity and salinity profiles along the longitudinal axis. Therefore,
a solution without implicit similarity assumptions is a preferable
technique.

The second feature of the Hansen and Rattray model which may
be considered a weakness is the strong dependence on the coefficient
of horizontal eddy diffusivity. Numerous investigaters have shown
the horizontal eddy flux of salt to be a miner term in the salt bal-
ance for estuaries. Eddy coefficients are difficult parameters to

measure, and even more difficult to predict, especially when averaged
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over a tidal perioed. Thus, until a more detailed understanding of
eddy processes in stratified fluids is achieved, it seems reascnable

to include only the most important of these eddy fiux terms in estuary

models.

The objective of the present study is to develop an analytical
model of time-averaged estuarine circulation which will avoid the less
tractable features of the previous models described above. The govern-

ing equations are similar to Hansen and Rattray's model, which was

originally sugpested by Pritchard's analysis of the James River

estuary. A golution technique which is continuous over the entire

length of an estuary is desired and which makes no assumptions about

similarity of velocity or salinity profiles. Only the vertical eddy

flux of salt and momentum are included, and thus only two eddy

coefficients need to be specified. 1In order to nrovide the analytical

solution with 4 predictive capabality, empirical cerrelations for

these two parameters with gross characteristics of the flow field are

sought, ag a fundamental feature of the complete selution,

3.2 _(_]ovegping Equations

3.2.1 Introduction

The model equations describing the circulation and distribution

of salinity are the equations of mation, of continuity, of conserva-

tion of salt and ap equation of state. The model is reduced to the

longitudinal gnd vertical dimensions by assuming lateral homogeneity.
Flgure 3.1 ig¢ a definition sketch showing the orientation of the

coordinate system with the x - axis Positive towardsg the head of the
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b{x)

Figure 3.1 Definition sketch for model equations
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estuary (upstream) and the y - axis positive downward. An additional
simplification is made restricting the width b(x) and the mean water
level h(x) to be Functions of the longitudinal coordinate only. An
inflow of freshwater Qf occurs at the far upstream end,

3.2.2 Equations of Motion

For the conditions described, the conservation of momentum for

the longitudinal direction can be written

dub + 3u2b + duvb

dub Qb _13p 3.1
dt ox % T pax b

vhere y = velocity inp longitudinal direction

v = velocity ip vertical direction

t = time
P = densiry

P = pressure

»
]

longitudinal direction
¥ = vertical direction

b = width

This equation 1s a balance of forces for the estuary at any time 4n

a tidal period, i.e., before time-averaging. The viscous frictional

terms and Coriolis forces have been neglected. In addition, the

approximation of Boussinesq has been applied to neplect density varis-

tions in all puy the bouyancy terms, The pressure ig for the fluid

only, atmospheric pressure being assumed zerg.
For the conservation of momentum in the vertical direction,

hYdYOHtatic conditions are assumed. Thus, inertial ang convective
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accelerations are neglected. The vertical equation of motion can

therefore be written

1 9p
0""‘8y+g 3.2

where g is the acceleration of gravity.

4.2.3 Equations of Water and Salt Comservation

FA

For incompressible flow, the two—-dimensional equation of continuity
is

dub vk
-g;{-—-l'—.-a—'y = 0. 3.3

The conservation of salt equation, before time—averaging, and

neglecting molecular diffusien 1s

3sh , Bush | Jwsb _
T e T 3.4

where s is the salinity and 1s a function of x, v, and t.

3.2.4 Time-Averaging of Equations

There are three time scales of interest for the model being con-
sidered. Turbulent fluctuations of the dependent variables may be
assumed to take place within a few minutes. These variables also have
a diurnal or semi-diurnal component due to the tidal motion. Finally,
slow variations over several tidal periods can result from the changing
freshwater inflows and monthly changes in tidal amplitude. Following
the classical methods, the dependent variables are written as the sum
of a mean and turbulent component, i.e., within the first time scale

mentioned,
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v=;+v'
s==§+s' 3.5
p=p+p
P=p+p
where the prime refers to the turbulent cemponent, Thesge equations
3re substituted into the governing equations 3.1 - 3.4 and averaged
b, Wb 35w I Tk T i 3.6
at x 3y p 3y ox Iy
9=—%—a+g 3.7
b ¥y
e,
b _ Juab + dvsb _ du's’h  yTeTp 3.9
It T A dy T Bx Jy - :
The edgy fluxes of momentum and salt, u'2, v’ u's’, and y'g' are

usually written ag the Product: of ap eddy coefficient apg the mean

Bradient of tpe quantity being transported. For example, u? may be

Téplaced by € gﬂ, where &

X 5 x “ould be a horizontal eddy viscocity.

However, £, the purpose of the pregent nalysis the introduction of

eddy Coefficients will be Postponed unti) time~averaging over a tidal

Period {g introduced.




In order to facilitate the tidal time-averaging, the mean de-
pendent variables are divided into two components, a tidal mean, and

a tidal varying term

= U+
11 ‘th
\—1=V+v
t
s=58+s
s =35+ s 3.10
-,
0 =p+0p,
-
p=P+p,

where U is the mean horizontal velocity for a tidal period and U, is

the harmonic component for the same tidal period, etc. As with the

,» 5, over

turbulent compenents, the average of a harmonic temm, e.g., u, ¢

a tidal period is zero by definition. Equations 3.10 are substituted

into equations 3.6 - 3.9 and averaged over a tidal peried

2

LI T S SO 107 S M SO

5t ' B 3  tE T T -

- r [

__1%]{’_ b~ 3<; >b 'd;u v'>b 1.11

Dm X ¥

0=-L &, 3.12
Py ¥

b | Vb _ 3.13

#x oy
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3Sb . ausb  O<u,s b avsh . 9<V,s b

t -
3t ax T ox + ay  t oy -
3<u's>p K<vTg>p 3.14
T T ax - dy

where < > indicates averaging over a tidal period.

From the analysis of the James River data, Pritchard (1954, 1956)

3.11 are the Pressure gradient and the vertical eddy flux of momentum,

all other terms being of second order, Thig assumption is included

in the Present development. In a later section it will be shown that

the neglected terms are indeed gma]} for the cases studied. For the

salt balance 3,14 the tidal Cross-products and horizontal eddy flux are

neglected by similar arguments. The reduced equations are further

simplified by introducing mean eddy coefficients for the remaining

turbulent terms

Sz 8y U 3.15
dy 3y (D? 3y )
3<vla’> zd (K 38 ) 3.16
3y dy dy

However, they are strictly

artificial ip that they do not preserve the mechanismg of turbulent
mixing, 1.e., tidaz activity,

in their formulatiop. In Particular,

€quation 3,15 relateg the net turbulent momentym flux <u™v™> ¢4 the
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net, non-tidal velocity U. By purely physical arguments this flux
should be related to the tidal wvelocity u, . This apparent inconsistancy
is partially resolved in Chapter V where Dy is correlated with the tidal

velocity. The equations are now written

__1 3 13 au
0= o o + 5 5y (bny 3y 3.17
1 ap
0=-"— ——+¢g 3.18
P, 9V
3Ub , 8Vh
ot 3y - D 3.19

3Sb , SbUS | 3bVS _

3 35
Jt ax Iy E;_(be 3y

). 3.20

The value and distributions of the mean eddy coefficients are
unknown. If a solution to the above set of equations can be shown to
match recorded data by proper fitting of Dy and Ky’ one must assume
that either all the neglected terms are zerc, or more probably, that
these neglected terms have been absorbed into these coefficients. A
comparison of equations 3.15 and 3.16 with the classical definitions
of eddy viscosity and eddy diffusivity clearly shows the difference

in the meaning of these terms

3 0 3 oU
+— (< _— — -
3y ( sy 3y>) # 5y (ny 3 3.21
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3 s d 3s
g RASREN L ge 3.22
e (<ky 5y ) # 5 (1(}7 Sy Y,

More specifically, Dy and Ky are not simply €, and k_ averaged over a

tidal period.
3.2.5 Equation of State

The effect of temperature on the relationshp between density and

salinity is not included In this model, & simple linear empirical ex—

pression is ysed

p= oo(l + as) 3.23

where P, is a reference density and ¢ ig 4 conversion constant. The
range of temperatureg encountered in eéstuaries does not require a

more complex expression, in light of

3.3 Additiona] Assumptions
—————- ASsumptions

The governing equationg developed in the preceeding sections can

other model assumptions.

not be golved analytically in their present form., Previous investiga-

salinity distributions as well as restrictions on the longitudinal

aallnity Bradjent, Ag Stated in 3 Preceeding Section, the present

inveatigation seeks to avoid the limitationg cf a similaritry solution.

Howwer, 48 wil]l be developed




longitudinal salinity gradient did net vary appreciably with vertical
position. Harleman and Ippen (1967) showed a similar pattern for the
analysis of data from a laboratory [lume. Taken to the extreme, this
observed feature suggests that the longitudinal salinity gradient may

be assumed independent of its vertical position, i.e.,

g8 _ 38

e T a0 3.24
although

3= S{x,y).

Introducing equation 3.24 into the set of governing equations
3.17 - 3.20 results in equations, which although now solvable analytical-
ly, no longer describe exactly the presumed physical mode of the net
circulation. A close fit of velocity or salinity profiles between
field or experimental data and the theoretical solutions can suggest
the validity of the above assumption only within the context of all
the other assumptions made in developing these equations.

The longitudinal salinity gradient %& ig replaced in equations
3.17 - 3.20 with the longitudinal gradient of a depth averaped salinity
Sd. Next, a steady-state condition is assumed for the initial develop-
ment of the solution. This condition will be removed in later sectioms,
and an unsteady solution will be presented. In addition, the two
mean eddy coefficients Dy and Ky are assumed independent of vertical

position. These coefficients have been shown to represent the rather

complex effects of time-averaging and of the neglecting of terms
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considered of smaller order. The vertical dependence of these
coefficients 1s not known, although several investipators have attempted
to analyse these terms from experimental and field ohservations, as
discussed in Chapter IT, Thus, Dy and KV are assumed to be independent

of y, and are replaced with effective coefficients for the entire depth

of flow, D and K, respectively,

3.4 Synthesis of Governing Equations

The synthesis of the original model equations, modified by the

assumptions discussed in section 3.3 begins with the equation of

hydrostatic pressure
— — 4 g. 3.12
Py 3y

Equation 3.12 ig intergrated in ¥
¥y
Pu 3.25
P8 4y
hp

and differentiated in x

)
P o o, i’
TR gt R 5l dy 3.26
bp
applying Leibnit,! rule and the Boussinesq approximation. FEquation
3.26 is next substituted into the longitudinal equation of motion
which now hag assumed that Dy(x,y) can be replaced with D(x)
L b 2%y
0 5x ""'5' 3.27
dy
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After substitution of 3.26

¥
oh
__0+ g EEE dy = D EEE
- B 3 o | 3x y ayz 3,28
hg

g o _p Eﬁy__ 3.29

The equation of state 3.23 is next introduced intc equaiton 3.29

3
38 _ [ 30 _
geg = D—5 - _ 3.30

Iy
The steady-state salt conservation equation, with Ky(x,y)

replaced with K(x) can be written

2
Bg)s(b + 3§Sb = bK a 2 3.31
b dy

Thig equation can alsc be written

2
35 05 a’s
U—4+V+—=K-—
ax ay Byz 3.32
since
alb Vb, _
S (§;— + E;—)— 0 3.33

from continuity 3.19.
Equation 3.32 is further simplified by introducing the assumption
that the leongitudinal, salinity gradient g%-can be replaced with a
as
gradient of the depth averaped salinity §;d‘ The same procedure is

applied to equation 3.31. The resulting system of governing equations
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can be written

as 3
d 3%
= “D 3 334
y
_3_“3 +.3_@=0 3.35
ax oy
as 2
d 38 a°g
EERR R R S 3.36

A stream function satisfying the equation of continuity 3.35 is

defined
- _ 1 av _ 1 3v¥
U--b‘g;-v-bgg 3.37
and thue the equations are reduced to
a4 paly
B "y % 3.38
y
2
S e s ok
9y ax ax ay 3y2 3.3%9

3.5 Boundary Condittons

The set of Boverning equations, (3,38 and 3.39) includes g5 fourth

order equation for the stream function requiring four boundary con-

ditions and a second order equation for salinity, subject to two

boundary conditions. These governing equations describe the

dynamics

of an €Stuary averaged over a tidal period, The boundary conditionsg,
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as well, should be mean conditions for this averapged system. With

the assumption of steady-state, any control volume defined by two
vertical boundaries, the mean water surface, and the bottom must
maintain a constant quantity of salt and have a net through-flow of
water equal to the freshwater discharge. No flux of water or salt can
oceur at a horizontal boundary, i.e., the surface or bottom. Frictional
stresses can be applied at both the surface and bottom and the condition
of no slip of the horizontal velocity on the bettom should also be
considered. These various boundary conditiens are examined in the
following paragraphs and a set of conditions is selected for in~

clusion in the analytical model.

Considering first the equation of conservation of momentum 3.34,
four boundary conditions are needed. Surface wind stresses are neglec-
ted, and since the mean eddy coefficient D has a finite value at the
surface by assumption, the vertical gradient of the net horizontal
velocity %g-must be made zero for zero surface stress. At the bottom
y = h, two possible conditions for the horizontal velocity are con-
sidered. A no-slip or U = 0 condition must apply for a precise model
of the actual flow. However, for the rough natural bottoms, or
even in laboratory flumes, the turbulent velocities are very large
near the bed, going to zero in a very thin layer which can be neglected
in the analytical model. If the net velocity is to have its maximum
value just above this thin layer, a condition of zero gradient, %g— = 0,
at the bottom is the appropriate model boundary conditiom. An analysis

of the laboratory flume tests in Chapter IV will show that this latter
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condition of negligible gstypegs results in a closer fit of the math—
ematical model to experimental and field velocities. However, for
the purpose of éxamining the behavior of these two possible approaches,
solutions for both are developed in this chapter,

The remaining two conditions for the Stream function are specified
by the requirement that the integral of the net horizontal velocity over
the depth must equal the freshwater discharge per unit width, Qf!'b-
By assigning the stream function a zero value at the bottom, its

surface value must equal Qf.

These boundary conditions for the equation of motion 3.38 may

be summarized ag follows:

y =0, 'gH =0, - é“‘; =0 zero surface
¥ ay

stress

zero bottom
ay
velocity
or
53U 3%y
Y'h.‘a‘§=0.-‘—=0 zero bottom
ay stress
h h
Q 1 ay 1
£/b = = - = - = - -
/b U dy N 3y dy b{ b4 +Th}
0 0
therefore
¥Y=h, ¥=09
conservation of
¥=0, ¥= Q
f freshwater
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Two boundarv conditions are needed to satisfy the salt balance
equation 3.39. Ideally, these conditions should specify a zero flux
of salt at the surface and the bottom. As the vertical velocity V
is zerc at these boundaries, the flux reduces to K%% where K is
non-zero. Thus, a condition that %g is zero at the surface and bottom
will satisfy the zero flux requirements. The.form of the solution of
equation 3.39, however, does not permit the specification of the
gradient of the salinity at two boundaries. This restriction will be
fully explained in section 3.7. The consequence of this limitation is
that a condition of zero gradient is specified at either of the two
boundaries and a second non-gradient condition for salinity is intro-
duced. If the salt balance equation is an accurate description of the
physical processes, a computed gradient at the other boundary, which
has no specified condition, should also be zero.

The alternate boundary condition for the salt balance is a
statement that the depth averaged salinity must equal a prescribed

value, S This mean salinity Sd also appears in the modified long-

a4
N 24

itudinal salinity gradient. Pt This condition, with either a

zerc gradient at the surface or at the bottom, completes the boundary

conditions for the model. These final conditions are written

95

¥y =0, §§-= G zero flux at
surface
or
vy = h, 35 0 zero flux at
9y
bottom
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d. _ specification of

=y

0 mean sal inity

3.6 Non-Dimensionalization of Equations

As with most problems of fluid dynamics, it is convenient tg
develop analytical solutions in a non-dimensional form in crder to
Permit generalized discuséions of results. The choice of terms intre-
duced to non-dimensionalize the various dependent and independent
variables, although scmewhat arbitrary, should recognize the possible
difficulties ip quantifying thege new parameters. The following

defintions will be shown to satisfy this condition:

=Z =X
n-—h E_r:-
i
wsg— az:f:
f [ 3.40
8, _ 54
ﬂ:-s—-
o

salinity yg One percent of the ocean 8alinity. g is the ocean
o

Salinity p
¥ 1s the depth of the Rean water leyel and Qf is the fresh-

water discharge, as Previously noted,

Thesge Quantitieg are introduced into €quations 3,138 and 3,39

20S_ 3
e T
1o o 3.41
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by

or

and

or

3.7

n

3.42

v,
an
v
——— :0
an
3.43
2
3V Loy
2
an
v =D
p o= 1
38 _
an =0
30 N
m =0
3.44
_Sa
S
D

Analytical Solution for Steady-State Conditions

The steady-state equations of motion and salt conservation, in

dimensionless form are

4
g Soh b
Ly DO

Qr

Lar]

B
A=

d_. 3 3.45

b
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o,
n o9&

<
a?

2

an

g6 9
n 3% th

o
ol

3.46

wherein ¢, §, Ed, E and N are all dimensjonless variables. These equations

can be further simplified by defining two coefficients,

gasoh b

C.(E) = —x7i

1 i, Q. 1.47
KLib

Equation 3.45 can be solved for the stream function ¥ by inteprating with

y four times

Qa

6
_ e _4n_
b= -C 5% 2%

‘:!

4 a3n + 34

™
[

where 3), ay, a3, and a4 are all functions of £, and are evaluated from
the boundary conditions. This determination will be presented for two
cases, depending upon the chelce of boundary conditions.

case 13 zerc bottom velocity

For this case, the boundary conditions are

2
3—-2—’=0,‘P=1,n=0
an
3.50
9 ¥
= =0 =
\3%7 0, s, N 1

and therefore

54



af)

- 3. _4d -
a=3+gh o a, =0
3.51
=_§..1_C_a.i a4=1-
a3 2 T 48 "1 3E
Substituting these values into 3.49 yields
ag. ¢ 8f, C
_ a1 4 3 n,2 At e
w"ag_ ﬂ—(—n + 2N —n)-n+1+2(n 11 3% 24) 3.52
case 2: zero bottom stress
For this case, the boundary conditions are
2
L 0, ¥=1, n=0
2
an
3.53
32w
=0 Y=0, n=1
2
an
and therefore
_1. % a, =0
317298
C. e 3.54
S S S =1
33 26 3, %4
Substituting these values inte 3.49 yields
90, C
-4 1, & 3_1 -
Y= 5E 24 {-n +2n nt -n+ 1. 3.55

The difference between the stream function for the two cases is

ah, C
n o2 -4 1
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The solution of the salt balance equation 3.46 is dependent upon the
stream function ¥ and therefore on the choice of case 1 or case 2. How-—
ever, the peneral solution can also be develeped in terms of an un-

specified stream function. A dwmy variable £{£,n) is defined

;% 3.56

£,
and substituted into a modified form of equation 3.46

3f BN . _ AGE,N)
an " ¢, () c, (8 3.57

where

ab
AEN) = - g—;f Q-E—d

B(E,n) = %g*

KL, b
C(E) » —— .
2 G.h

Equation 3.57 is multiplied by an intergration factor

B

exp (f - EZ dan)

and the solution for 3.57 1is shown by Wylie (1960) to be

f(E,n) = exp (f % dn)f%exp - %dn) dn
2 2 2

3.58
+ b (&) exp (f %2‘*‘1)
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wherein bl(ﬁ) must be evaluated from the boundary condition. At thig
point it is clear that only one gradient condition for salinity may be
included, as noted in section 3.5. There is no reason to expect that
the choice of boundar} for specifyving g% =0, i.e., F(E,N) = 0, is
important. Thus, for convenience this condition will be applied at the
surface, 1 = 0, and this determines that bl(E) = 0.

A second condition is needed to specify the salinity from equation

3.586,
s(g,n) = [ £(E.n) dn + by(E). 3.59

This condition,stated in equationms 3.44, is that the depth average of the

salinity must equal a known value, Bd ,

1
b, () = 8, - Io I £(E,n) dn dn 3,60

and thus

1

B(&,n) = [ £(5,n) dn + 8, - Io

[f(E.n) dn dn. 3.61

Equation 3.61, although awkward in appearance if written in terms
of the stream function, may be evaluated easily by numerical intergration
using a digital computer.

3.8 Inputs for Solution

In the development of the sclutlons for the stream function and
salinity, several parameters have been introduced and assumed known
a priori. These parameters are reviewed in this section and possible

scurces of quantitative evaluation are discussed.
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The depth average of the salinity, averaged over a tidal peried,
38
84 and its longitudinal gradient —< must both be specified in the

3x

solutions. For the purpose of evaluating the model from rccorded data,
these parameters can be simply backfigured from the measurements. How-
ever, in order for the analytical model to have a predictive capability,
these terms must be predictable themselves., There have heen nuUmMerous
semi-~empirical fits for this one-dimensional salinity distribution,
Harleman and Ippen (1961), McGregor (1972) and others. However, & Trecen:
ly developed numerical model by Thatcher and Harleman (1972) permits
one to compute a one-dimensional unsteady salinity distribution. This
approach results in a general, non-empirical analysis for this input
parameter. A summary of their model, and the details of its coupling
with the analytical two-dimensional solution are presented in Chapter V
The intrusion length can also be evaluated by their technique.

The freshwater inflow and ocean boundary salinity are considered
to be fundamental quantities, as are the depth and width distributrions.

The remaining two quantities needed to evaluate the analytical
solution are the eddy coefficients, K and D. Nothing can be said
about these terms prior to their evaluation from recorded data. The
procedure for their determination is to fit the analytical solutions for
velocity and salinity with flume and field data and to pick the best
fit values for ¥ and D by trial and error. Since the stream function
is dependent only on D, this procedure is not toe cumbersome,

even though

the salinity is dependent on boeth D and ¥. This process of back- caz1-

culating D and X from recorded data is repeated for several data getg.
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The resulting distributions of these coefficients are then correlated
with parameters characteristic of the flow conditions, as is shown in
Chapter IV.

In summary, the parameters needed to evaluate the analytical
solutions for velocity and salinity, except for the coefficients D and
K, may be determined either from recorded data or a numerical model.

The former method is used first to appraise the model and to back-figure
values for D and K. The latter method, a coupling with a numerical
model demonstrates the predictive capabilities of the analytical model.

3.9 Theoretical Velecity and Salinity Profiles

3.9.1 Velocity Profiles

For the condition of zerc horizental velocity at the bottom, the

dimensionless stream function, eguation 3.52, is

38, C 38, C
RN S QPRI 3 - N2 1y0- =S L
where
gas héb
C. = —2
1 LiD Qf
Qg
The horizontal velocity, normalized by the freshwater velocity Ug = ¢y
is
36, C
U 3 _ 4”1 3 2 _
U, T 52?-5—-(- 4n” + 6n 1) -1
3.62
ag_ C
1 d 1 2
-3 a - *E_'EZ')(3H -1
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and the vertical velocity normalized by this same factor is

2 2
L 30 378 C
= =t et r e oty —of 363
hid 3k of

ot

Cﬂld
:“‘Hl."
|

c
2

FE
i
=

Table 3.1

Model Parameters for Fipures 3.2 - 3.4

S 29.2

o ppt
Li 160 ft
h .5 ft
b .75 ft
o .75
Bd .66
% e
13
329d
—7 -2.8B6
a3t
D .24:{10*3 ftzfsec
K .18x10"> ftzfsec

The broken lines in figures 3.2 and 3.3 illustrate these velocity
profiles for representative values of input parameters listed in Table
3.1. The horizontal velocity profile, figure 3,2, clearly shows the

boundary conditions of zerc gradient at the surface and zero Velocity at
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Depth, v/h

Figure 3.2
Analytic solution for horizontal velocity preofile
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- u=0, y=h

Depth, y/h
LA

L 1 i L 1 1 |
0 -2 -4 -6 -8 ~10 -12 -14

v/u, x 10~3

Figure 3.3 Analytic solution for vertical velocity profile
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the bottom. The flow reversal, with seaward flow in the top region

and landward flow in the bhottom repion is also demonstrated. The inter-
gral of this profile is equal to 1.0 which is a net discharge of the
freshwater inflow. Figure 3,3 shows the vertical velocity profile for
the same conditions. Thisg velocity is zero at the surface and bottom,
and directed downward throughout the depth. From the form of equation
3.63 it is apparent that the direction of the vertical velocitgzgepends
on the sign of the second derivative of the salinity gradient g

12

a peint which will be Further discussed in section 4.2.2. The maximun

value of this velocity occurs near mid-depth.
The second case for the bottom boundary conditjon is that the vertical

gradient of the horizontal velocity is zero, as stated in equatiom 3.55.

B C
w=——§ ﬁ{—n4+2n3—n}—n+1. 3.55
3k

d8. C
U sy d 1 3 2
Yo _ L4 S -
Uf 5N S 2 { n” + én 1}-1 3.64
and
L L. C 328
v i3y i 1 d 4 3
2 = . N R /A + - .
Uf TS o3 . 5 {-n 27 n} 3.65

These profiles are shown as solid lines on figures 3.2 and 3.3. For
this case, both the horizontal velocity U and the vertical velocity
V are symetric about the mid-depth, y/h = 0.5. In addition, the hor-

izontal velocity is symetric about a vertical coordinate of U;’Uf = 1.0.
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The mean eddy coefficient D, as well as all other input barameters,
is the same for both cases plotted in fipures 3.2 and 3.3. Thus, for
the same value of D, the beundary condition of zero bottom velocity

results in a significant reduction in both the horizontal and the

vertical velocities over most of the depth. This means that the choice

of boundary condition will influence the best-fit values of D for 3

given set of experimental or field data,

3.9.2 Salinitz Profiles

The model solution for the vertical salinity distribution {g givey

as
PEm = [ £, an+ oy - ” £(£,n) dn dn 3.61
0
vhere
FEm) = exp {[ g& l-dn}f— QQ.EEE,_i exp {I_ LTI S dn
» £¢, an 3L T, e,

k() L;b(g)

CZ(E) - ‘hag—ﬂ?gjn— 3.62

» 2n

Figure



Depth, y/h

i i | | |

0 .1 .2 3 b .5 .6 .7
Salinity, S/So

Figure 3.4 Analytic solution for salinity profile
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IV Evaluation of Steady-State Solution

4.1 Introduction

The analvtical solution for velocity and salinitv distribution de-
veloped in Chapter 11 is evaluated with laboratory data from the Vicksburg
salinity flume, the Delft Nydraulic Laboratory salinity flume and the
James River field study. This combined set of data covers a wide range of
flow conditions and degrees of salinity stratification, some of which may
partially invalidate model assumptions. These latter studies help to de-
fine the limits of model application. For each case studied, a best-fit
value for the two mean eddy coefficients is found at each longitudinal
station. All of these cases are assumed to be in a steady-state condi-
tion, i.e., values for velocity and salinity for successive tidal cycles
are assumed the same. This assumption is valid for the flume studies by
experimental design. For the James River studv, steady-state can only
be an approximate condition, depending upon the freshwater hydrograph.
4.2 W.E.S. Flume

4.2.1 Description of Flume

The laboratory flume of the Corps of Engineers, U.S. Army, Vicksburg
Waterways Experiment Station (WES), is described in detail in a WES re-
port (1955). The flume, schematically shown in figure 4.1, is a lucite
channel 327 ft. long, 0.75 ft, wide and 1.5 ft. in total depth. At the
ocean end there is a tidal reservoir which can maintain a constant salinity
and a periedic surface level. The oppesite end has a freshwater reservoir.
Roughness is achieved by 1/4 inch strips attached to the side walls on
2 inch centers. Different estuarine conditions are modeled by varying

the freshwater inflow, the tidal amplitude and the basin salinity.
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Detailed one-dimensional results are presented by Ippen and Harleman {(1961)
for numerous tests and conditions. Harleman and Ippen (1967) present
two-dimensional analysis of three tests showing the average over a tidal
period of the vertical velocity and salinity profiles for several long-
itudinal stations. Table 4.1 summarizes the flume conditions for these
three runs.

4.2.2 Evaluation of Bottom Boundary Condition - WES 16

The depth-averaged time-averaged longitudinal salinity distribution
and its first and second derivatives is a required input to the analytical
model. Tor the purpose of evaluating the model solutions and determining
the eddy coefficients, this salinity distribution is determined from the
recorded data. An analytical function is passed through the data points,
and its first and second derivatives computed using a spline computer
program, outlined ir appendix 2. Figure 4.2a shows the depth-averaged,
time-averaged longitudinal salinity distribution for WES 16. The ex-
perimental points are the depth-averages of the vertical profiles shown
in Plate 11 of Harleman and Ippen (1967), and the smooth curve is the
fitted spline function. The first and second derivatives for this func-
tion are plotted in figures 4.2b and 4.2c respectively. As stated pre—
viously, the inflection point shown in figure 4.2c determines the long-
itudinal position where the vertical velocity changes its direction.

Harleman and Ippen (1967) backfigured vertical velocities using
graphical intergraticn of the equation of continuity. Figure 4,2d shows
these vertical velocities with the corresponding velocities from the
analytical solution., The agreement in direction, and more significantly,

location of the reversal in direction (between 40 and 80) confirms the
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gbservation that the inflection peint of the first derivative of the
salinity determines this location. The large difference in magnitude
between the vertical velocities at station 5 is probably due to the fact
that in both the graphical technique of Harleman and Ippen and the spline
function of the present analysis, difficulty is encountered at the end
points, where extrapolation becomes necessary. Consequently, 2!l analyti-
cal results at the upstream or downstream ends of observed or predicted
salinity distributions must be viewed with a considerable degree of caution.

Having found the longitudinal salinity distribution functicn and
using the values for the other input parameters from table 4.1, the an-
alytical model can be evaluated for different values of the eddy coeffi-
cients. Two solutions sets are shown, depending upen the choice of bottem
boundary condition for the horizontal velocity. The computations are
carried out on a digital computer, as is outlined in appendix 1.

Case 1 - Zero Bottom Velocity

The equations for the model solutions for velccity and salinity are
given in Chapter III. Figure 4.34 and figure 4.3b show
the best-fit comparisons of model and experimental velocity profiles for
5 stations, 5, 40, B0, 120 and 160 feet from the ocean end for WES test
16. At each station, a different value for the eddy coefficient D is
used, as listed in table 4.2, At station 5, very close to the ocean
reservoir of the flume, entrance effects, as well as the influence of
extrapclated gradients, probably are responsible for the higher values
of D for both cases. At the remaining stations, the values of the eddy
coefficients do not vary much with the longitudinal position. From the

figures, 4.3a - 4.3b, it is seen that the condition of zeroc bottom stress,
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case 2, gives a better fit to the experimental data. Figures 4.3c - 4.3d
show the comparisons of salinity profiles for the same flume test. Clearly,
the choice of velocity boundary condition has little effect on the salinity
profiles. Table 4.3 lists the best-fit values of the eddy coefficient of
salt X for the WES test No. 16 for the two cases. Again, except for
station 5, 5 feet from the flume entrance, the eddy coefficients do not
vary much along the length of the flume.

Based upon an evaluation of figures 4,3a - 4.3d as well as similar
plots for other WES tests, case 2, which states that at the bottom the
vertical gradient of the longitudinal velocity is zero, was chosen as
the most suitable boundary condition. In making this selection, certalm
emphasis was placed on modeling the net velocities just above the bed
(which this case handles better than the condition of zero bottom velocity)
for the purposes of analyzing sediment transport problems. All remaining
comparisons of experimental and analytical velocity and salinity profiles
are for this zero gradient condition, case 2. Table 4.4 illustrates the
comparison of computed and experimental wvelocity and salinity distribu-
t{fons for WES test 16 for the zero gradient boundary condition. All
data in this table except the valueg for D and K are dimensionless, the
latter having unitas of ftzfsec. Appendix 3 contains the complete tab-

ulated summary of WES test 16, as well as the data for the other tests

analysed in this study.

4.2.3 WES Test 14 and 11

The other two WES tests used to evaluate the analytical medel are

examples of a more stratified flow, test 11, and a less stratified flow,

test 14. Figures 4.4a = 4.4b illustrate experimental and model agreemant
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Table 4.2

Best-Fit Values for D for WES-16

Case 1 T Case 2
u=0, y=h %E:O‘ y=h
Station 2 -3 > -3
D, Ft /sec x 10 v, Ft /sec x 10
5 .2 .35
40 11 .24
80 .12 .26
120 .12 .24
160 1z .22
Table 4.3
Best—Fit Values for K for WES-16
Case 1 Case 2
- Ju B
Station u=0, y=h By 0. y=h
K, thfsec X 10-3 K, thfsec X 10_3
5 07 .18
40 .17 .18
80 .15 .17
120 .15 .21
160

.15 .18

9
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for velocity and salinity at station 80 for both tests. 1In figure 4.4b
(test 11) the salinity gradient at the botton y/h = 1.0 has an appreciable
slope, indicating that perhaps the model assumpticons are not as valid for

this degree of stratification. The tables in appendix 3 summarize the
results for these two tests.

4.3 Delft Flume

4.3.1 Description of Flume

At the Delft Hydraulles Laboratory an experimental investigation of
salinity intrusion in estuaries similar to the Vicksburg studies has been
carried out. The details of flume design and measurement technique are
reported in Delft (1970). Table 4.5 lists the basic Delft flume dimen-

sions with those of the Vicksburg flume for comparison. For the Delft

Table 4.5

Delft and Vicksburg Flume Dimensilons

Delft Vicksburg
Length, ft. 546 327 .
Depth, ft. (msl) .7 .5
Width, ft. 2.0 .75
Roughness (bottom) (side)

] 2,
test the bottom roughness was achieved by vertical bars .5 x .5 cm in
cross-section attached to the flume bottom. By changing the number of
bars the roughness could be varied for different runs.

Four Delft tests were analysed with the analvtical model. All the

tests were for steady-state conditions and the longitudipal salinity
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distribution was backfigured from the recorded data as was done for the

VES tests. Table 4.6 summarizes the flow conditions for these four test:

Tabulated detailed results can be found in appendix 3 which document the

\ . fo
agreement between experimental data and best-fit analytical solutioms

these Delft tesrs, Figures 4.5 - 4.8 {illustrate these results at a cen

tral section of the salinity regime.

4.4 James River Estuary

The Chesapeake Bay Institute 1950 survey cof the James River estuarry

1s described by Pritchard and Kent (1953). Velocity and salinity data,

averaged over geveral tidal periods, are presented for three longitudins

stations, shown in figure 4.9. Table 4.7 summarizes the flow conditions

for the three periods of the survey,

Table 4.7

Jamee River Estuary ~ Flow Conditions

Date s m3fsec Lym 5, PpL
18-23 June 124, 90,900 24
26 June-9 July 104. 94,127 24
17-21 July 130. 30,000 24

————

The dats in the field Survey report did not include sufficient long—

Itudinal salinity Stations for direct estimates of the intrusion lengthsg

and ocean saliniry (Chesapeake Bay salinity), The ocean salinity was
estimated from gn unpublighed report by the U.g5, Army, Vaterways Exper-

iment Station, describing the salinity verification of a hydraulic mode}
lames River estuary,

The intrusion lengths were determined from
lee (1970), figure 14

10 which plotg Intrusion length as a function of
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freshwater discharge.
The depth of mean water was assumed to be 7.5 meters for all three

stations, and the mean widths were determined from the CBI report as

follows:
station mean width, m
J-11 3000.
J-17 2350.
J-24 1640.

Tables in appendix 3 present the comparison between field measurement
and analytical solution for velocity and salinity with depth. Figure 4.10
illustrates this comparison at J-17 for 26 June-7 July. The difference
between computed and actual velocities over most of the depth is probably
due to several factors, including the uncertainity of time-averaged field
measurements, and more importantly, the simplifying assumptien of constant
width with depth for the analytie solution. The salirity profiles for
this same station show better agreement than the velocities. However,
there appears to be a sharp vertical gradient near middepth for the field
data which is not observed for the analytical solution. This difference
may be a result of the same factors cited before for the velocity profile.

In general, the analytical model, although clearly capable of re-
producing flume conditions more exactly, dces not appear to break down
for the prototype conditions and scales exemplified by the James River
estuary.

4.5 Comments on Neglected Terms and Other Model Assumptions

In the development of the governing set of model equations, the time-

averaged convective terms have been neglected from the longitudinal
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equation of motion, leaving the pressure gradient balanced by the vertical

eddy diffusion of momentum

sy au _ _ 1 9P au
U§+V3y“ s TP 4.1

neglected

These neglected terms can now be computed from equations 3.64 and 3.65
and compared with the remaining terms to determine the reasonableness of
the assumtpion. This comparison is shown in table 4.8 for WES test No. 16.
At all stations and depths the neglected terms are smaller than the re-
maining terms, but there are several places, e.g., stations 40 and B0 at
middepth where these terms, and especially the vertical convection V %%
is of relatively important size. The non-neglible order of these terms
indicates that the mean eddy coefficient D is an ambiguous parameter,
including both convective and diffusive components. Table 4.9 shows
a similar comparison of the order of the couvective terms for Delft test
116 and the James River estuary, 26 June-7 July. Again, the neglected
terms ate consistently smaller than the pressure gradient=turbulent dif-
fusion terms, but of significant size at about middepth.

A second important model assumption is that the leongitudinal salinity

gradient §rS--is independent of its vertical position, and thus longitudinal

ax
salinity profiles at different depths are assumed parallel. Figures 4.11,

4.12, and 4.13 illustrate these profiles for WES 16, Delft 116 and James

River 26 June-7 July, respectively. This assumption appears to be quite

reasonable from about x/L, = .25 to x!Li = .60 and rather questionable up-
i

stream and downstream of this region. However, the tabulated analysis of
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Table 4.9

Comparison of Size of Neplected Terms for Longitudinal Equation

of Motion for James River and Delft Flume

James River 26 June - 7 July

xILi = .29

3U 35U 2%y
y/h 1A L Dl

9% dy 3y2

(x 10_6 mzfsec)

0 1.1 0 16.2
2 7 N 9.7
4 .1 9 3.2
6 08 .9 -3.2
B 6 A -9.7
1 1 0 -16.2

y/h

Delft Flume T-116

foi = .29
Y 3U 2%
Uom Vo —
3% dy 3 2

¥

(x 107% a?/sec)

1 .0 4.8
.07 02 2.9
.02 .05 1.

0 05 -1
0 ,02 -2.9
02 .0 -4.,8
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the various flume tests seem to indicate that the analytical solution
is not very sensitive to violations of this assumption, since good ex-
perimental-analytical compariscns are found over the entire salinity

region.

In the preceeding section best-fit values for the time-averaged
eddy coefficients D and K were determined for 10 tests including 3 proto-
type field studies. These tests covered a wide range of density strati-
fications and hydraulic conditions., The coefficients of mean momentum
Elux and mean salt Flux for these tests show a varying degree of long-
jtudinal variation as summarized in table 4.10. As is discussed in sec-
tion 4.2.2, the upstream and downstream ends of the salinity distribution
have been eliminated from this table. This procedure removes errors
introduced by faulty analytical extrapolation of the spline function
used to compute first and second derivatives of the longitudinal salinity
distribution. To facilitate cross—-comparisons between flume tests, the
units of the eddy coefficients are all given in the MKS system in this
table.

The longitudinal variations of the mean eddy coefficients shown in
table 4.10 suggest that although D and K are functions of x, this de-
pendence is of secondary importance. By introducing the additional
assumption that these mean eddy coefficients may be replaced with effec-
rive constant values for the entire longitudinal distance of the salinity
regime, correlations of these coefficients are greatly simplified.

Table 4.11 lists the arithemetic mean values for the various tests an-

alysed, defined as D and K. The ratioc of freshwater velocity Uf to

g9




Table 4.10

Longitudinal Variation of Mean Eddy Coefficients

Test/Station, x }Li

D,mzfsec X 104

. 4
K.mzfsec x 10

WES 11

WES 14

WES 16

RELFT 117

DELFT 116

DELFT 121

DELFT 122

James River

18-23 June

26 June-
7 July

17-21 July

.29

.22
LA
.66

.25
.50
.75

.29
L43
.57
71
.B6

.29
.43
.57
.11
.86

.28
41
.54
67
.81
.94

.29
43

ls?
.71

.30

.30

.30

.29

.19
.26
.28

.22
.24
.22

.56
.60
.68
b4
.84

.64
.64
.84
.68
.92

.72
.76
.B4
.80
1.12
1.04

.72
.76

.76
.84

1.5

6.5

6.5

.12

.35
.48
.26

.17
.16
.20

.15
.17
.13
.18
.22

.20
.15
.13
.18
.34

.06
.15
.06
.15
.11
.15

A1
.15
.06
.18
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Table 4.11

Mean Values of Eddy Coefficients

Test D K Ufjuo
mzlsec X 10_4 mzfsec x 10-4

WES 11 .29 .12 .13
14 W24 .36 029
16 .23 .18 047

DELFT 117 .66 .17 .14
116 .74 20 .15
121 .88 A1 .09
122 AT .13 L1

James River

18-23 June 7.5 2.1 .0085

26 June-

7 July 6.5 3.1 .007

17-21 July 6.5 2.1 009
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maximum flood velocity at the ocean boundary u is also shown in table
4.11. This velocity ratio is a significant parameter for defining flow
conditions and degrees of stratification, as will be shown in the following
discussion,

Figure 4.14 demonstrates the effect of using K and D 1in the place of
the local best-fit values for Delft test 116. It is clearly seen in this
example that the constant coefficients yield quite useful results for the
velocity and salinity distributions. This example is typical of the in-
fluence of this new assumption, and similar results can be shown for the
other tests analysed.

The significance of being able to use constant values for D and K,
i.e., D and K, is that only two unknown parameters need now be specified
in order to apply the analytical model to a given set of estuarine con-
ditions, i.e., freshwater @ischarge, ccean salinity, depth, ete. All
other model parameters can be readily determined with the possible ex-
ception of the longitudinal salinity distribution. This latter input can
be computed with the aid of a one~dimensional numerical model, as pre-
viously discussed in Chapter TII. The determination of K and D for input
to the medel i1s made by using an empirical correlation of these con-
stant coefficients with the gross characteristics of the estuarine system.

The set of pgoverning equations developed in Chapter III can be written

a6 4
d o
Cy (&) %= - —F 4.2
1 3k arf‘
and
o8 2
_ﬂi.}ﬂ@:(}(;)-—-—ae 4.3
In 3 an & 2°> anz

102




SJUPTDTIIH00 Appd Juelsuod Fufsn Jo s30933d HItH 2and1j

911 LSAL 1dTdd

mD\D

=

qmo I‘l.l-l

ZANE S

0T X 2% = % -

uoast v
6"
[ 1-
T T
g
JUIWTIFAKI "' .
79~ a—

+8; @ X Hf* =] =—=
28/ 50,01

L

gl

y/ 4 ‘y3dag

y/4 fyidag

0



where Cl’ CZ’ h, b, Qf, D, and K are all functiomns of the longitudinal

coordinate £,

Following the arguments presented above for using constant values of
D (£} = D and K (£) = ﬁ, the dimensionless form of the goverming equations

suggests that a possible pair of useful parameters for correlating K and

D is
_ gaSOho4bo
i “fo
and
K L.b
c - io
2 Qfo ho

where the zero subscript, e.g., bo’ ho. refers to the downstream limit

Or ocean boundary of the estuary. All terms in these new terms are

assumed constant over the longitudinal and vertical dimensions, and the

only unknown parameters are K and D.

The values of K and D should be a function of the degree of mixing -
of the flow field which is in turn a function of the tidal activity. 1In
recognition of this dynamic relationship of the physical system being
modeled, El and 62 have been correlated with a characteristie non-time-
averaged tidal velocity. To be consistent with the definitions above, this
velocity is specified as the maximum entrance flood velocity u,» non-

0
dimensionalized by the freshwater velocity at this same boundary EEEH’

0 o0

Q_ /b h U
- fo' oo _ _fo 4.5

3 u u
o 0

c
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The value of the maximum flood velocity is considered to be a depth
averaged term, as might be estimated from a table of tide currents, or
some other similar hydrographic reference.

Tables 4.12a, 4.12b, and 4.12¢c cummarize the computations of 61,

62’ and E3 for the estuaries included in this development. Filgures 4.15
and 4.16 show the correlation of El with 63 and Ez with 63. In general,
this straight forward technique of using dimensionless groups defined by
the equations, yields seemingly significant correlations. Yo explanation
is readily availahle to explain the point for WES 16 on figure 4.15,
although the complex manipulation of the data could easily have introduced
an improper value for cme of the component parameters.

It is significant in figures 4.15 and 4.16 that both laboratory flume
tests and prototype field surveys follow the same correlatioms. In
addition, the range of degrees of stratificatiom include the highly strat-
ified Delft tests 121 and 122 as well as the nearly well mixed middle
reaches of the James River estuary. Thus, this empirical approach to
evaluating the effective coefficients of mean eddy flux, D and K 1s
apparently applicable to naturally occuring estuarine conditions.

By a simple rearrangement of terms, the unfamiliar parameters El and

€, can be shown to be equivalent to the products of several more cenven-

tional quantities.

4
= agsoho bo CtSogho ho houo Y 4.6
gz 222 = (GG ) :
Q. L., D u i D fo
fo'i o

and
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These latter groupings more clearly show that the dynamics of the net

circulation and net salinity distribution are dependent upon scale ratios
- k]

h %S gh

o . : : o 0
(igj, a densimetric tidal Froude number, ——;—5— , and eddy coefficients,

- — o

K D
u h and uh

o0 o 0
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v Analysis of Transient Flume Study Using Coupled One and Two
Dimensional Models

5.1 Description of Transient Test Procedure

The WES salinity flume described in Chapter IV has been used to
evaluate the transient behavior of estuaries as well as the steady-state
conditions discﬁssed previously., WES test 42 was conducted with a
transient freshwater inflow, decreased in discrete steps for 25 consecu-
tive tidal cycles, starting from a steady-state initial condition. All
other flume variables, including tidal amplitude and ocean salinity
were maintalned constant during the course of the test, as indicated

in table 5.1

Table 5.1

Summary of Flume Conditions for WES Transient Test 42

depth, msl .5 ft.

width 75 ft. )
length 327. ft.

tidal amplitude 05 ft.

tidal period 600. sec

roughness (side wall), n .02 ft.lj6

initial freshwater discharge .025 ft.o/sec

final freshwater discharge .00652 ftslsec

The test was begun by running 23 cycles at a freshwater inflow of
.025 ft3/5ec and thus permitting an equilibrium initial condition to be
reached. Tor the following 25 cycles, the freshwater inflow was decreased

.00077 ft3/sec at the end of each cycle. Measurements of velocity were
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made for cycle 1 (last steady-state cycle prior to decreasing inflow)

and cycle 25 for three depths, .05, .25, and .45 fr., at five stations,
5, 40, 80, 120 and 160 ft. from the ocean end at one minute intervals for
both cycles. Similar times, depths and stations were used in measuring
salinities for cycles 1, 6, 14 and 24,

5.2 Discussion of One-Dimensional Numerical Model and Results for Transient
Test

The numerical computation of the one-dimensional longitudinal salinity
distribution was carried out with a model presented by Thatcher and
Harleman (1972). This model is a real-time simultaneous solution of
the one-dimensional (lengitudinal) equations of momentum, continuity,
state, and salt conservation. Real-time refers to time variations
within a tidal period, unlike the analytical two-dimensional model,
which is averaged over a tidal pericd. Since the numerical model can
handle boundary conditions which change with successive tidal cycles,
e.g., tidal amplitude, freshwater inflow, etc., it can compute the tran-
sient or natural behavior of real estuaries. Finally, the numerical
model has been developed for variable area estuaries, a conditien which
is not required for the constant width salinity flume considered in
this discussion.

The governing equations for the numerical model are:

continuity equaticn

3h 30 _ 5.1
baetax 9°°
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momentum equation

- - - Ad -y =
'Qg+ﬁ§2+6_a—u+g%-A+g-—~s+go—'lg‘L—=O 5.2
dt ox ox % o 2
AC Rh
where
d:

c distance from the surface to the centroid of the cross—-section

b = channel width

h = mean water level depth

6 & diacharge. averaged over the cross~section

q = lateral inflow rer unit length

U = longitudinal velocity, averaged over the cross-section
A =

cross-sectional area
= acceleration of gravity

hydraulic radius = —-——41——j:—
b+ 2h+m)

:';u m
H

P J |
W

surface elevation relative to local mean water level

C = chezy coefficient

salt equation

9AS . 338 _ 3 35
53¢ * 5 - 3% (EA 5;) 5.3

where

S = salinity, averaged over the cross-section

E = coefficient of longitudinal dispersion
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equation of state

0.75 S + 1,000. 5.4

=
It

where
5 = salinity in parts per thousand

density in kg/m3.

k=]
]

The coefficient of longitudinal dispersion E 1s related by

Thatcher and Harleman to the local longitudinal salinity gradient %3 '

+ E 5.5

o g o
where § = %w and x = x/L, S0 being the ocean salinity and L the length
[

of the estuary. ET is the dispersion coefficient applicable to a com-

pletely mixed region, where %§-= 0 or to the freshwater tidal region

upstream of the limit of salinity intrusion,
By = 77 n iR/ 5.6

where n is the Manning's coefficient.
Thatcher and Harleman have found a correlation for the dispersion

parameter X and the stratification as represented by the estuary number

2
P_F
£, = TD _ 5.7
T
Qf
where PT is the tidal prism defined as the volume of water entering on
u
o
the flood tide. FD is the densimetric Froude number, ———m -
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wherein uo is the maximum flood velocity at the entrance and Ap is

the change in density over the entire length of the estuary.

The dispersion parameter K, is normalized by the maximum flood

K, K
velocity and the length of the estuary ;—— . The correlation of ﬁ;i

with the estuary number E, includes data from five WES steady-state

flume tests, and several studies of variable area estuaries for both

quasi-steady-state and transient conditions, Figure 5.1 shows this

correlation,

this correlation can be used to compute the changing value of the dis—

persion parameter K)+ and therefore the dispersion coefficient E(x,t)

for the transient study.

v
galinity at the ocean end

n, discharges Q and salinities S for discrete time steps at discrete

points along the flume length. Finite difference techniques are used

to find the numerical solution, combining both explicit and Implicit
methods.,

Table 5.2 summarizes the flume conditions which are the input to

the numerical model.

116

Since all parameters except K, can be computed directly,

sing boundary conditions of known tidal amplitude and flood tide

» the numerical model computes the elevations

T e
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Table 5.2

W.E.S. Transiﬂent Test 42 Flume Conditionﬁ_

tidal period

600 sec. %
flume length 327 fr, :
width 0.75 frt.
depth, msl 0.05 ft.

Manning's n .02 ft.l/6
ocean salinitcy 29.0 ppt
tidal amplitude 05 fr.
The value for the freshwater inflow varied from the initial discharge

of 0.025 ft3;’sec te a final value at the 25th cycle of .00652 ft3/sec

as discussed. The dispersion parameter K, was taken from figure 5.1

which yielded a value of .31 for cycle 1 and a value of .21 for cycle

25. Figures 5.2, 5.3 and 5.4 illustrate the numerical solution for the

one-dimensional salinities at stations 40, 80 and 120 for the 25 tran-

slent cycles of WES test 42. The very pood agreement between experimental

data {the crosses) and the computed salinities shows the capabilities
of the nmumerical program. These figures, 5.2 - 5.4 also show the effect

of a decreasing freshwater inflow on the distribution of salinity in

the flume. A steady increase in salt level and length of salinity intru-

sion is seen to be a result of this type of freshwater hydrograph. The '
effects of this flow pattern on the vertical profiles of velocity and
salinity as well as its influence on sediment transport are examined in

the following sections of this chapter,
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5.3 Analytical Sclution for Unsteady Flow Conditions

The analytical model presented in Chapter T1T was developed for
estuaries in a steady-state condition, i.e., influencing factors such
as tidal amplitude and freshwater inflow remain constant for successive
tidal cycles. TFor the analysis of the transient flume test, or for moxe
realistic natural conditions, an additional term is included in the
equation of salt conservation, 3.32

+ U2 +V o=k

3t ax Iy

2
38 38 35 a_g 5.8

Iy

where % is the average over a single tidal period of the temporal change
in salinity S5(x,y,t). For steady-state conditions, g—g is zero, but this
is not the case for transient conditions, since it varies by definition
from one cycle to the next. The other model equations are unchanged

with the note that the freshwater discharge Of is now a variable and has

a different value with each tidal cycle. However, the momentum equations

remain tha same as for the steady state because hoth temporal and con-

veective accelerations can be neglected.

In order to solve this modified set of model equations, an assumptio
. 95 . , .. 28
is introduced for the PYs term which is similar to that made for the -

term in equation 5.8. Since it has been shown reasonable to assume that
35

# f(y), this same substitution, as # f(y) (and thus 28 can be replaced
ax 98 at ot

with T ) is dintroduced,
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A | R 2 T e 5.9

Equation 5.9 is non-dimensionalized with the same terms used in the

steady-state analysis with the addition of the tidal period T, T = t/T.

3 3 an ' :

Using the same boundary conditions and sclution technique discussed in
Chapter II1, the unsteady model, including equation 5.10 yields the

following expression for the two-dimensional salinity,

1
O(t,n) = [f(&,n) dn + Od - i Jf(&,n) dndn 5.11
wvhere
20 G
ad 1 d a3 d.1 ad 1
£(E,n) = exp (f 2 = df{(C, === - 55 w7 )5 exp (f- 5 % dmy}dn
f 13 02 4371 an ok 02 E 02
5.12
and
L.bh
c = 1
4 QfT

The equation for the stream function is unchanged.

5.4 Two-Dimensional Experimental and Analytical Results for Transient
Flume Study

As with the analysis of the steady-state flume tests discussed in
Chapter IV, the application of the analytical model to this transient
flume study begins with the computation of the one-dimensional longitudinal
salinity distribution. In this case, to illustrate the predictive possi-

bilities of the coupled one-and two- dimensional models, the Thatcher
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and Harleman (1972) numerical model is uscd to compute this needed dis-
tribution. The values for salinity from the real-time model are averaged
over each of the 25 transient tidal cycles. This same technique is

a5
employed to find the change in mean salinity o= - Figure 5.5 illustrates
the experimental and computed time-averaged, one-dimensional salinity
distribution for cyeles 1, 14 and 24. Except at station 5, where flume
entrance effects are present, the agreement between the averaged numerical
results and the averaged experimental data is very good, a further
confirmation of the numerical model. As with the previous flume analysis,
the first and second spacial derivatives of this mean salinity are
determined with the spline techmique outlined in appendix 2.

The other necessary inputs to the analytical model include the flume
dimensions, intrusion lengths, and eddy coefficients D and K. These
latter terms were taken from the steady-state correlation shown in figures
4.15 and 4.16. Table 5.3 sumnarizes the inputs to the two-dimensional
model for cycles in which experimental data are available. Figures 5.6
and 5.7 illustrate the comparison between experimental and computed
velocities for cycles 1 and 25. The circled crosses indicate experimental
points which are probably inaccurate and should be discounted. In
general, the analytical results, using values for D taken from the steady-
state correlations, yield very acceptable results for this transient
test. Figure 5.8 shows the comparison of salinity profiles. Again,
using values of ¥ from the steady-state correlations appears to give

quite good fits of the distributions of salinity.

As discussed in section 5.3, the analytical model for the transient
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3%
iti i des a —-— term in the salt baylance e ;
flume conditions inclu "t quation, 1, )
interesting to examine the importance of inciuding this term in the

+

model, at least with regard to the scales fourd in a lsihorator_v flume
Table 5.4 lists the computed values of the salinities for cycle § g

station 40 for model solutioms with and without the unsteady term,

Table 5.4
85 .
Effect of 3t Term in Salt Balance

WES 42 Station 40 Cycle 6

Depth, y/h S, ppt (with "}f) S,ppt (-g—f neglected)
0 5.17 5.28
.2 6.42 6.51
4 9.86 $.92
.6 14.75 14.74
.8 20.20 20.10
L. 25.52 25.30

The maximum difference of .22 ppt is not a significant quantity con-
sidering the model assumptions and other departures from the natural
System. Thus, it would seem that perhaps the steadv-state salt balance
équation could be used to model this trancient sal inity phenomenon.

However, it should be noted that this flume test has a 70 per cent

chanpe in freshwater discharge in 25 cycles, and the Delaware estuary
tan have the game change in about 10 tida! cyeles. Without additional

analysis, it i
’ is therefore uncertain as to whether the unsteady rerss

13n



can be neglected for applications of this model to real estuaries

5.5 Influence of Transient Flume Conditions on Shoaling Characteristics

An important feature of the two-dimensional modeling of the time-
averaged velocity profiles is the identification of the longitudinal
position where the net bottom velocity changes direction and goes
through a zero value. This point is commonly called the "null-point",
and has been shown by Simmons (1965), and others, to be a zone of high
rates of shoaling in estuarine channels, as previously discussed in
Chapter II. Figure 5.9 illustrates the features of this null-point and
shows that it is equivalent to the point where the net landward flow
of salt water ceases.

Since the vertical structure cof the net velocity field is strongly
dependent upon the magnitude of freshwater inflow, the null-peint must
also exhibit a dependence on these discharges. Figure 5.10 shows how
the null-point, as determined from the analytical model, moves upstream
as the freshwater inflow is decreased over the 25 cycles of the transient
flume study. The null-point can be found analytically from the equation
for the horizonral velocity,

30, C

AP e ent-1-1

_4d 31,64
¥E 24 n

LU
Ut

At the bottom, n = 1, a condition of zero velocity must satisfy an
equation which states that

BOd

l1=- =

3t
30

d . ., .t
where gi— is the non-dimensicnal one-d1mer131onal salinity g

¥,

radient, and
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The Fact that U!U-f is zero implies that the net density current ie
h nt ig just

equal and opposite to the freshwater velocity, since U containg boty
Oth of

these components in its definition.
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vi The Savannah Estuary - An Analvtical Inv‘*’wtuarine Shoaling
R e ——_—

The shoaling problems of the Savannah Estuary have been carefully
reviewed by Simmons (1965) and Harleman and Ippen (1969). Both hydraulic
models and field investigations have shown a relationship between the
10ngitudinal tocation of maximum shoaling and a null point as indicated
in figure 6.1. Figure 6.2 is a location map for the estuary. From
these figures it is seen that immediately downstream of Savannah Harbor,
potween stations 120 and 130, a zone of very high shoaling is located
by comparison with the rest of the estuary. In addition, for the medel
data shown in figure 6.1, with a freshwater flow equal to 7,000 cfs,
the null point also coccurs between these two statiens,

In their report, Harleman and Ippen present the time-and depth-
averaged longitudinal  salinity distributions from the model for fresh-
vater flows of 7,000 cfs and 16,000 cfs, shown in figure 6.3 (their
figure 13). With these curves, and the correlation for eddy coefficients
presented in Chapter IV, it is possible to apply the analytical model
developed in Chapter III to this estuary and thus further iavestigate the
mll peint dependence on freshwater flow rates.

Table 6.1 summarizes the data input to the analytical model for both
the 7,000 cfs and 16,000 cfs freshwater flow rates. Following the arguments
of Harleman and Tppen, the discharge through the navigation channel is

estinated atthree-fourths of the total freshwater discharge, i.e.. 5250 cfs

and 12,000 cfs respectively. The value of 2 knots for the maximum flood

velocity {s taken from the Coast and Geodetic Tidal Current Tables.

The values for the spacial derivatives of the one—dimensional long=

Ltudinal salinity distribution were computed using the spline progt
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outlined in appendix 2.

Figure 6.4 illustrates the analytical results for the null point
for the two freshwater flows. The connected circles are the computed
values and the crosses are the hydraulic model data, as reported by
Harleman and Tppen. The fairly close agreement between computed and
experimental values indicates that the Savannah estuary prototype scales
and conditiens do not seriously violate the assumptions of the analytical
model.

In figure 6.4 it is seen that the null point shifts downstream about
1,000 feet when the freshwater discharge is increased to 16,000 cfs.
Qualitative results of this nature illustrate the usefulness of the
apalytical model in the analysis of the many factors which determine the
circulation patterns in estuaries. When used in conjunction with a
numerical model, as discussed in Chapter V, or a hydraulic model, as in

the present illustration, this analytical model should prove to be a

valuable aid to engineering analysis.

Table 6.1

Savannah Estuary & Inputs to Analytical Mode]

S0 = 30 ppt h0 = 27 ft.
u - 2 knots b = 2,000 ft.
&) o
Of = 16,000 cfs Q = 7,000 cfs
L, = 85,000 ft. L; = 100,000 ft.
= ,029
Uelu = .066 U/ ug

-3 2
D - D = ft /sec
D=12.2 x 10 3ftzlsec D=12.8 x 10
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g1 Swmary and Conclusions

7.1 Objectives

The importance of estuaries in the complex schemes of the natural
environment demands that man gain a more fundamental understanding of the
dynamics of these water bodies. The ecological stress threatening es-
tyaries as a result of increasing coastal development can only be an-
swered with the knowledge derived from intensive research and analysis.

A small part of this needed understanding can be realized from the de-
velopment of mathematical models of estuarine circulation and dynamics.
The development of a mathematical model requires the understanding of
the physics of the natural system being modeled. Thus, the record of
these model developments is in fact the history of man's increasing
knowledge of these coastal systems.

The present study seeks a method of predicting the patterns of cir-
culation and salinity distribution for the somewhat restrictive condition
resulting from time-averaging these processes over a tidal period.
Lengitudinal and vertical variationms only, are considered, and thus
lateral spacial averaging is also implied. Although these limiting con-

ditions exclude the modeling of the tidal varying properties characteristic

; ; i 1.
of estuaries, several important preblems can be examined with such a mode

An interesting example of this latter set of model applications 18 the

. : i els as
occurence of zones of shoaling and of turbidity in estuarine chann

i atterns.
a consequence of the modification of the natural freshwater inflov p

i der-
The coupled growth in mathematical model development and physical un

ingering
Standing through physical models and field work has made serious enginee
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analysis possible which can be applied successfully to this problem.
7.2 Sumaary

The model of the time-averaged longitudinal and vertical distributions
of velocity and salinity developed in this study employs an analytical
solution to the four basic equations describing these parameters.

1. Equations of motion. These equations state the conservation of
longitudinal and vertical momentum. The assumption 1s made that, for
the mean force balance, averaged over a tidal period, the only important
terms are the following: the pressure gradient and buoyancy for the
vertical equation, and the balance between the pressure gradient and the
vertical flux of momentum for the longitudinal equation of motion,.

2. Equation of water conservation. The continuity equation for an
incompressible fluid is used in the model.

3. Equation of salt comservation. ‘The two-dimensional equation of
the conservation of dissolved salt is included in the model in which the
horizontal and vertical convection is balanced by the vertical eddy
diffusion only. Thus, the transport by horizontal eddying has been neg-
lected,

4. Equation of state. The relationship between density and salinity
is approximated by a linear function which neglects temperature effects.

In seeking an analytical solution to the above set of equations,
several additional assumptions are introduced. The longitudinal salinity
gradient has been shown by field and laboratory analysis to be nearly
independent of depth. This observation is included in the model by

replacing the actual longitudinal salinity gradient %é-(x,y) with the

X
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as
gradient of the depth averaged salinity =§;-(x). The second important

assumption is that the mean vertical eddy coefficients of momentum Dy(x,y)
and salt Ky(x,y) may be replaced with effective coefficients independent
of depth, D{x) and K(x).

With the above assumptions and a set of generally accepted boundary
conditions, an analytical soclution is found using simple methods of nu—
merical intergration. This solution is studied with data from several
flume tests and three field studies. A result of this analysis is that
accurate profiles of velocity and salinity can be obtained when the eddy
coefficients D(x) and K(x) are assumed as constants, D and K, independent
of both x and y. These modified ceefficients have been correlated with
the ratio of freshwater velocity and maximum flood tide velocity at the
entrance of the estuary, incorporating twe dimensionless terms which may
be derived from the governing equations.

The model, including the correlations for the eddy coefficients, has
been successfully applied to a transient flume study wherein the freshwater
inflow varied over a period of 25 tidal cycles. In this regard, the model
was coupled with the results from a one-dimensional non-time-averaged
numerical model of salinity intrusien. Used in this manner, the two models
represent an impertant combined approach to the analysis of estuarine
systems.

Finally, the two-dimensional analytical model has correctly described
the relationship known to exist between the zones of shoaling and levels

of freshwater inflow for the Savannah estuary.
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7.3 Future Work

The present model is neither the first attempt, nor should it be the
final answer to the mathematical formulaticn of the physics governing
estuarine circulation and diffusion. Immediate improvements and refine-
ments might best be directed towards z more sophisticated approach to
the determination of the eddy coefficlents, rather than the essentially
empirical technique of the present study. A significant improvement in
the details of the vertical structure of velocity and salinity is directly
dependent on the more accurage representation of these coefficients.

Ultimately, a real-time two-dimensional, or even three-dimensional
model, may be developed, using numerical methods with large, high speed
computers. For the proper evaluation of these models of the future, as
well as the present analvtical schemes, much mnre.laboratory, and es-
pecilally, field data are needed. The present oceanographical data banks
are often collections of observations which do not lend themselves to
direct comparison to mathematical models. A greater feedback between
model builder and fleld observer must be iniated to promote rapid progress

in this study of estuaries.
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Appendix 1

The Computer Program for Two-Dimensional Analytical Fstuary Model

The analytical solutions for velocity and salinity development in

Chapter IIT include several complex integrals which are evaluated by nu-

merical intergration techniques. From a computational peint of view, the

model is very simple and requires only a limited amount of time and storage-

Both an IBM 370/155 using Fertran IV, G level, Mod 3 and a HP 2114B

using HP Basic have been emploved in this study. To illustrate the rela-

tive simplicity of the computational scheme, the HP Basic program is pre-

sented in this appendix.

Program inputs:

S,M,N the normalized cne-dimensional salinity and its first and

second derivatives. These parameters are usually determined
from the SPLINE program described in appendix 2.

D,K the eddy coefficients, normally taken from the correlations

presented in Chapter IV.

Ul the freshwater velocity, fobh {(constant for constant b and h).
H1 the depth of msl.

S¢ the ocean salinity,

| K the salinity intrusion length.

For each longitudinal station, the model begins with the computation
of the dimensionless groups Cl and C2. Then, at each discrete depth a
horizontal and vertical velocity is found. With these parameters knowm,
the nmumerical intergration of the salinity function is carried out, a com-—
putation requiring four nested integrals. Finally, the salinitv is com-

puted and printed with the horizontal and vertical velocities.
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In HP basic, the program is as follows:

6§28 DIM S(51,M[51,N053,KI51,D05]1,A011],B011],H111)
&5p MAT READ S

6§52 MAT READ ™

§54 MAT READ N

§56 MAT READ K

658 ®MAT READ D

§6¢ READ U!,H!,58,L1

§7¢ FOR J=1 TO 5

6§72 LET C2=K[JI%L1/CU 1xH1t2)

674 LET Clzl.0@PBRE~@3%,75%50%32.,2%H 113/ (L I*xD[JI*U1)
&76 FOR I=zi TO LI

678 LET Yz l&k{I-1)

8¢ LET ALT1=(MIJ]I*C1+CIRMIJ Y/ 24% CA%Y13~8xY12+1))) /C2
6§22 LET BUIT=(-Cl*N[J]1/24x (Y t4-2%Y134+YII/C2

6§99 NEXT 1

691 PRINT

6§92 PRINT

€93 PRINT "Y/H",” U/UF",” VsF",” 5/so"

§94 PRINT "=m-eremcc e r e e casacdten et
6§95 PRINT

788 LET T2:-T4=T6=T8zH3:z0

702 FOR I=2 TO 1!

1784 LET TI1=T2

766 LET T2=To+5,0008R0E~02x(BII1+Bl[I-11)

788 LET T3=T4

710 LET T4=T4+5.00B00E-02% (AL T I*EXP(-T2)+A[I-11*EXP(=T]))
712 LET T5:=T6

714 LET T&=T6+5,80080E-02% (EXP(T2)*T MHEXP(T1)%T3)
716 LET HII-11=T5

718 LET T7=T8B

720 LET T8=-T8+5.00BABE-O2%« (T&+T5 3

722 NEXT I

7538 LET HL111=Ts

75¢ FOR I=1 TO I1

792 LET Yz.lx(I-1)

7680 LET H4=HI[I1+50J41-T8

762 LET H3=HJI+H4

788 LET U=A[I1xC2/M[J]

77¢ LET V=BI{IIxC2xKl/LI

788 PRINT Y,U,V,H4

782 NEXT 1

784 LET H3z=H3/11

TB6 PRINT H3

798 NEXT J
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T g .
e e

e T

B28
82e
824
B26
8217
g28
829
838
oge

DATA
DATA
DATA
DATA
DATA
DATA
D&TA
DATA
END

.81 ’.66, .3?9-13 ,ROBGQQQE“GQ
-.01 ,-.97,-1.17,9.69,-.21
-1.4,-2.9,1.2,2.6,1.3

2.30000PE~04,2,30000E-04,2,30008E-84

2.300PRE-04,2.30000E~04

1. ARYOBE~04,1.40000E-04,1,40000E-04

| ABQQLE~-D4,] .4DD0DE-34
-2QEQGBBE-BQ'.5 ,29.7'182

A sample of the output from this program is given below, All values

are dimensionless, and y/h = 0 is at the surface.

.B1B6TY9

4,73864
4,52927
3.961
3412355
2.10664
!
-. 106637
-1,12355
~-1.961
~2.52927
-2.73864
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~2.76591E~83
-5.23296E-03
-7.16431E-03
-F£.3987SE-023
-8.81089FE-83
-8.395879E-23
~7.16431E-83
-5.23296E-03
=2, 76591E-023
a

774508
« 175924
. 180885
. 186747
. 7195527
. 805925
L.B17347
.B829136
.BABG26
851212
.B6BA32



Appendix 2

The Computer Program for Spline Interpolation of One-Dimensional Salinity
Gradients

The first and second spacial derivatives of the one-dimensional
longitudinal salinity distribution, which are inputs to the analytical
model described in appendix 1, are computed with a spline interpolation
routine, The splipe program, written here in HP Basic, was adapted from
the M.I.T. Information Processing Center Program, described in their
bulletin AP-72. As stated in AP-72:

The spline fit curve is a mathematical expression for
the shape taken by an idealized splire (a thin wood or
metal strip) passing through the given points........
The spline curve is a piecewise cubic with continuocus
first and second derivatives. Thus, it can give good
approximations to the first and second derivatives of
the function in addition to the function values,
Program inputs:

Y the 1-D salinities, normalized by the ocean salinity

L} the salinity intrusion length, ft.

T the distance between values of salinity, y (T is constant in

this case, but can alsoc be a variable.)

5 the distance between points where interpolated salinities are

to be found.

N the number of points where salinities are given

M the number of points where interpolation is carried out.
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INPUT N,HM,5,T,L
DIM X(211,7(21)
LET 7011=X[11=D
FCOR I=-2 TO M
LET Z1I1=z7[I-1¥+5/L1

NEXT 1

DIM YI[5]

PRINT "X","MEAN SAL,","DS/EXT "L 25/DRE"
FOR I=-2 TO N

12 LET ¥(Ilzx{I~-11+T/LI

HEXT I

PRINT

MAT READ Y

LET Si=T/LI

17 LET HO=N-1

18 LET W[1,1}=-.5

19 LET YI2,11=0

28 FOR I1=2 TO N@

22 LET F=¢Y!II+13=YLI))/S1-C(Y[I1-¥II-11)/5])
23 LET 54=S1% 166667

24 LET W2z (S14+4S51)%,333333-54%W[1,I-1]

25 LET WI1,I31=(Si%k 1666675 /U2

26 LET WI2,I1)=(F-S4xWi2,I-11)/W

27 NEXT I

36 LET ELHI=(.5%W[2,NR1)/CL+,5%x Y[ 1 ,NO1)

42 FOR 1=z2 TO N

45 LET K=M+1-1

S LET EIKI1=WI2,K1-VW[1,KI*xE(K+1]

55 NeXT I

¢p FOR I=! TO M

65 LET Z1=7(1)

70 LET K=2

75 IF (Z1-X111)<¢ THEN 28

16 IF (Z1-%X111)=6 THEN 368

77 IF (Z1-X[11)=8 THEN 85

g IF ZIi<(l.1xX[1)1-,1*X[2)) THEN 498

g2  GOTO 309

£5 LET K=zN

g7 IF (7I-XIN1)<8 THEN 96§

Bg IF (ZI-X[N)1)=00 THEN 300

g IF (Z1-XIN))>0 THEN 93

93 IF ZI>C1 1%X[N]-,1%X[N-11) THEN 408

94 GOTO 348

l
SJALZ21),Bl21],00211,D021),E021 1,492,210 ]

W00 -] YA b N

e
—
o
=
o]
==
—

3

— e
P L B S
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jerY)

+ e e w b e bl e,

58
100
119
111
115
128
121
122
125
176
138
135
U@
3@l
305
3D

315

3ng
325
330
335
3440
345
350
351
355
360
365
371
373
375
376
377
408
410
452
56

LET M2:z2
LET 43=N
REMN
LET K= (M3+M22 /8
IF (M3=(Ma=-.12) AND (M3<(MP+.1)) THEN 38@
IF (71-X[X1><@ THEN 125
IF (71=-%X[K1>z0 THEN 300
IF (Z1l=X{¥K1)>0 THEN 130
LET M3=K
GOTO 118
LET M2=K+1
GOTO 118
REM
LET X2=X[K1-Zl
LET X3=zX2rt2
LET 23=Z1-X[K-1]
LET z4=73t2
LET S2=S51x%2
LET S3=S1%,166667
LET EI=E(X]
LET E2=zE[K-1]
LET Y1=Y[K}/S1
LET Y2:Y[K-11/51
LET h[I1:(EQ*XS*X2+E1*ZA*ZSJ*.166667/5l

LET A[I]:A[I]+(Y1-E1*53)*23+(Y2-E2*55)*x2
LET B[I}:(E1*24-E2*x3)/52+Y1-Y2-(E1-E2)*55
LET C[I]:(EZ*X2+E1*ZS)/SI

NEXT 1

FOR Iz1 TO H

LET Z[131=2[T1#L!

PRINT Z[I],A[I],B{I],C[I]

NEXT 1

GOTO 5086

PRINT ™ OUT OF RANGE, x="13Z1

GOTO 308
DATA 01,277, .532,42,4,00000E-02,0

END
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An example of the spline program oufput is given below. The values

of x are in feet, and the other terms are dimensionless.

25,5 ,408,40 ,160
X MEAN SAL. DS /DX DES/DXRZ
o o .51 -.441 -.714
_i 40 o 17 -, 78875 -1.428
i Sg «532 -1.26 _2.982
* 128 2 -1.89125 4,332
160 4,000R00E~02 -.278999% 2,166
READY
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appendix 3

Tables of Computed and E“P?EEEEEEEA_EEEEEEEX_a“d Salinity Distributions

The following tables present the comparison of computed and experi-

mental velocity and salinity distributions for the flume tests and field

data evaluated in Chapter TV. The units of the eddy coefficients D and K

are as stated in the table; all other terms are dimensionless.
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